Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug;24(18):3115-23.
doi: 10.1016/s0142-9612(03)00131-5.

Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends

Affiliations

Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends

K H Tan et al. Biomaterials. 2003 Aug.

Abstract

In tissue engineering (TE), temporary three-dimensional scaffolds are essential to guide cell proliferation and to maintain native phenotypes in regenerating biologic tissues or organs. To create the scaffolds, rapid prototyping (RP) techniques are emerging as fabrication techniques of choice as they are capable of overcoming many of the limitations encountered with conventional manual-based fabrication processes. In this research, RP fabrication of solvent free porous polymeric and composite scaffolds was investigated. Biomaterials such as polyetheretherketone (PEEK) and hydroxyapatite (HA) were experimentally processed on a commercial selective laser sintering (SLS) RP system. The SLS technique is highly advantageous as it provides good user control over the microstructures of created scaffolds by adjusting the SLS process parameters. Different weight percentage (wt%) compositions of physically mixed PEEK/HA powder blends were sintered to assess their suitability for SLS processing. Microstructural assessments of the scaffolds were conducted using electron microscopy. The results ascertained the potential of SLS-fabricated TE scaffolds.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources