Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures
- PMID: 12896996
- PMCID: PMC166476
- DOI: 10.1128/JB.185.16.4772-4778.2003
Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures
Abstract
Expression of the genes of the alkane degradation pathway encoded in the Pseudomonas putida OCT plasmid are subject to negative and dominant global control depending on the carbon source used and on the physiological status of the cell. We investigated the signals responsible for this control in chemostat cultures under conditions of nutrient or oxygen limitation. Our results show that this global control is not related to the growth rate and responds to two different signals. One signal is the concentration of the carbon source that generates the repressing effect (true catabolite repression control). The second signal is influenced by the level of expression of the cytochome o ubiquinol oxidase, which in turn depends on factors such as oxygen availability or the carbon source used. Since under carbon limitation conditions the first signal is relieved but the second signal is not, we propose that modulation mediated by the cytochrome o ubiquinol oxidase is not classical catabolite repression control but rather a more general physiological control mechanism. The two signals have an additive, but independent, effect, inhibiting induction of the alkane degradation pathway.
Figures




Similar articles
-
Inactivation of cytochrome o ubiquinol oxidase relieves catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.J Bacteriol. 2002 Jul;184(14):3785-93. doi: 10.1128/JB.184.14.3785-3793.2002. J Bacteriol. 2002. PMID: 12081947 Free PMC article.
-
The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants.J Bacteriol. 1999 Mar;181(5):1610-6. doi: 10.1128/JB.181.5.1610-1616.1999. J Bacteriol. 1999. PMID: 10049394 Free PMC article.
-
Catabolite repression of the toluene degradation pathway in Pseudomonas putida harboring pWW0 under various conditions of nutrient limitation in chemostat culture.Appl Environ Microbiol. 1996 Feb;62(2):601-6. doi: 10.1128/aem.62.2.601-606.1996. Appl Environ Microbiol. 1996. PMID: 8593060 Free PMC article.
-
Levels and activity of the Pseudomonas putida global regulatory protein Crc vary according to growth conditions.J Bacteriol. 2005 Jun;187(11):3678-86. doi: 10.1128/JB.187.11.3678-3686.2005. J Bacteriol. 2005. PMID: 15901690 Free PMC article.
-
The cyo operon of Pseudomonas putida is involved in carbon catabolite repression of phenol degradation.Mol Genet Genomics. 2001 Oct;266(2):199-206. doi: 10.1007/s004380100539. Mol Genet Genomics. 2001. PMID: 11683260
Cited by
-
Physiology, fast and slow: bacterial response to variable resource stoichiometry and dilution rate.mSystems. 2024 Aug 20;9(8):e0077024. doi: 10.1128/msystems.00770-24. Epub 2024 Jul 9. mSystems. 2024. PMID: 38980051 Free PMC article.
-
Functional genomics of stress response in Pseudomonas putida KT2440.J Bacteriol. 2006 Jun;188(11):4079-92. doi: 10.1128/JB.00101-06. J Bacteriol. 2006. PMID: 16707699 Free PMC article.
-
Biodegradation of 8-anilino-1-naphthalenesulfonic acid by Pseudomonas aeruginosa.J Ind Microbiol Biotechnol. 2006 Oct;33(10):845-9. doi: 10.1007/s10295-006-0132-1. Epub 2006 May 9. J Ind Microbiol Biotechnol. 2006. PMID: 16683126
-
Global regulation of food supply by Pseudomonas putida DOT-T1E.J Bacteriol. 2010 Apr;192(8):2169-81. doi: 10.1128/JB.01129-09. Epub 2010 Feb 5. J Bacteriol. 2010. PMID: 20139187 Free PMC article.
-
Expression of canonical SOS genes is not under LexA repression in Bdellovibrio bacteriovorus.J Bacteriol. 2005 Aug;187(15):5367-75. doi: 10.1128/JB.187.15.5367-5375.2005. J Bacteriol. 2005. PMID: 16030231 Free PMC article.
References
-
- Bauchop, T., and S. R. Eldsen. 1960. The growth of microorganisms in relation to their energy supply. J. Gen. Microbiol. 23:457-569. - PubMed
-
- Canosa, I., J. M. Sánchez-Romero, L. Yuste, and F. Rojo. 2000. A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol. Microbiol. 35:791-799. - PubMed
-
- Cases, I., and V. de Lorenzo. 1998. Expression systems and physiological control of promoter activity in bacteria. Curr. Opin. Microbiol. 1:303-310. - PubMed
-
- Comolli, J. C., and T. J. Donohue. 2002. Pseudomonas aeruginosa RoxR, a response regulator related to Rhodobacter sphaeroides PrrA, activates expression of the cyanide-insensitive terminal oxidase. Mol. Microbiol. 45:755-768. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases