Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992:(27):19-20.

Synthesis of chimeric RNAs between U6 small nuclear RNA and (-)sTRSV and analysis of their cleavage activities against the substrate RNA

Affiliations
  • PMID: 1289815

Synthesis of chimeric RNAs between U6 small nuclear RNA and (-)sTRSV and analysis of their cleavage activities against the substrate RNA

T Tani et al. Nucleic Acids Symp Ser. 1992.

Abstract

U6 small nuclear RNA (U6 snRNA) is one of the spliceosomal RNAs essential for pre-mRNA splicing. Highly conserved region of U6 snRNA shows a structural similarity with the catalytic center of the negative strand of the satellite RNA of tobacco ring spot virus [(-)sTRSV], supporting the hypothesis that U6 snRNA has a catalytic role in pre-mRNA splicing. To test this hypothesis, we examined in vitro whether synthetic RNAs consisting of the sequence of the highly conserved region of U6 snRNA or various chimeric RNAs between the U6 region and the catalytic center of (-)sTRSV could cleave a substrate RNA that can partially base-pair with them and has a GU sequence between the pairing regions. Chimeric RNAs with 70 to 83% sequence identity with the conserved region of S. pombe U6 snRNA cleaved the substrate RNA at the 5' side of the GU sequence. In addition, we found that the highly conserved region of U6 snRNA is similar in structure to the catalytic core region of the group I self-splicing intron in cyanobacteria. These results support the hypothesis that U6 snRNA catalyzes the pre-mRNA splicing reaction and U6 snRNA may originate from the catalytic domain of an ancient self-splicing intron.

PubMed Disclaimer

Similar articles

LinkOut - more resources