Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;43(3):281-91.
doi: 10.1002/glia.10256.

Cultured astrocytes express toll-like receptors for bacterial products

Affiliations

Cultured astrocytes express toll-like receptors for bacterial products

Christal C Bowman et al. Glia. 2003 Sep.

Abstract

It has become apparent that astrocytes may be important contributors to inflammatory immune responses within the brain in response to microbial challenges. To date, the mechanisms that underlie activation of this major glial cell type by such challenges have not been investigated. In the present study, we present evidence for members of a recently discovered family of receptors for highly conserved microbial components, the Toll-like receptors (TLRs), in isolated cultures of primary murine astrocytes. We describe the low-level constitutive expression of messenger RNA-encoding TLR2, TLR4, TLR5, and TLR9 in resting cultures of these cells. Importantly, the level of expression of messenger RNA for each of these receptors is markedly elevated following exposure to specific bacteria-derived ligands for these receptors. The functional expression of these receptor proteins is further supported by the ability of known ligands for each TLR to induce both message expression and protein secretion of the proinflammatory cytokine, interleukin-6. In addition, the recent availability of antibodies to TLR2 and TLR4 has enabled us to demonstrate directly the presence of these receptors on astrocytes by Western blot and immunofluorescence analysis, respectively. Furthermore, we have confirmed the sensitivity of such receptor expression to ligand stimulation. The present demonstration of Toll-like microbial pattern-recognition receptors on primary astrocytes provides a mechanistic link between bacterial challenge and inflammatory immune responses that may be an important component of the pathologies of bacterially induced inflammatory CNS disorders.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources