Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug;93(2):77-81.

A screening study on the liability of eight different female sex steroids to inhibit CYP2C9, 2C19 and 3A4 activities in human liver microsomes

Affiliations
  • PMID: 12899669

A screening study on the liability of eight different female sex steroids to inhibit CYP2C9, 2C19 and 3A4 activities in human liver microsomes

Kari Laine et al. Pharmacol Toxicol. 2003 Aug.

Abstract

The aim of this study was to screen the inhibitory potential of different clinically used oestrogen and progestin hormones on CYP2C9, 2C19 and 3A4 activities in human liver microsomes. The degree of inhibition by desogestrel, 3-ketodesogestrel, 17-beta-oestradiol, gestodene, aethinyloestradiol, medroxyprogesterone acetate, norethisterone or L-norgestrel were studied at 100 microM on losartan oxidation (CYP2C9), R-omeprazole 5'-hydroxylation (CYP2C19) and R-omeprazole sulphoxidation (CYP3A4) with a 10-min preincubation with NADPH in human liver microsomes prepared from 6 individual genotyped donor livers. Aethinyloestradiol was found to be a potent inhibitor (55% mean inhibition; 95% CI 32% to 79%) of losartan oxidation (CYP2C9) and R-omeprazole 5-hydroxylation (70%; 63% to 77%) (CYP2C19), while it had little effect on R-omeprazole sulphoxidation (CYP3A4) activity. 17-beta-Oestradiol did not produce significant inhibition on any of the studied enzyme activities. Of the progestin hormones studied, gestodene and 3-ketodesogestrel were potent inhibitors of CYP2C19 (57%; 47% to 67% and 51%; 29% to 45%) and CYP3A4 (45%; 30% to 59% and 40%; 19% to 62%), but had little effect on the CYP2C9 activity. In addition, medroxyprogesterone acetate was found to inhibit CYP2C9 (55%; 45% to 65%), while not having significant effect on 2C19 or 3A4. In conclusion, the liability of clinically used female sex steroids to inhibit CYP2C9, 2C19 and 3A4 activities in human liver microsomes is very distinctive and these differences among both the oestrogen and progestin hormones may, at least in part, explain the variable results from clinical trials examining inhibitory effects of hormone replacement therapy and oral contraceptives on drug metabolism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources