The critical closing pressure of the cerebral circulation
- PMID: 12900178
- DOI: 10.1016/s1350-4533(03)00027-4
The critical closing pressure of the cerebral circulation
Abstract
The critical closing pressure (CrCP) of the cerebral circulation indicates the value of arterial blood pressure (ABP) at which cerebral blood flow (CBF) approaches zero. Measurements in animals and in humans, have shown that the CrCP is significantly greater than zero. A simple mathematical model, incorporating the effects of arterial elasticity and active wall tension, shows that CrCP can be influenced by several structural and physiological parameters, notably intracranial pressure (ICP) and active wall tension. Due to the non-linear shape of the complete ABP-CBF curve, most methods proposed for estimation of CrCP can only represent the linear range of the pressure-flow (or velocity) relationship. As a consequence, only estimates of apparent CrCP can be obtained, and these tend to be significantly higher than the true CrCP. Estimates of apparent CrCP have been shown to be influenced by arterial PCO2, ICP, cerebral autoregulation, intra-thoracic pressure, and mean ABP. There is a lack of investigation, under well-controlled conditions, to assess whether CrCP is altered in disease states. Studies of the cerebral circulation need to take CrCP into account, to obtain more accurate estimates of cerebrovascular resistance changes, and to reflect the correct dynamic relationship between instantaneous ABP and CBF.
Similar articles
-
Cerebral blood flow velocity during mental activation: interpretation with different models of the passive pressure-velocity relationship.J Appl Physiol (1985). 2005 Dec;99(6):2352-62. doi: 10.1152/japplphysiol.00631.2005. Epub 2005 Aug 11. J Appl Physiol (1985). 2005. PMID: 16099892 Clinical Trial.
-
Cerebral Critical Closing Pressure: Is the Multiparameter Model Better Suited to Estimate Physiology of Cerebral Hemodynamics?Neurocrit Care. 2016 Dec;25(3):446-454. doi: 10.1007/s12028-016-0288-0. Neurocrit Care. 2016. PMID: 27389005
-
The Ontogeny of Cerebrovascular Critical Closing Pressure.Acta Neurochir Suppl. 2016;122:249-53. doi: 10.1007/978-3-319-22533-3_50. Acta Neurochir Suppl. 2016. PMID: 27165916
-
Cerebral autoregulation: from models to clinical applications.Cardiovasc Eng. 2008 Mar;8(1):42-59. doi: 10.1007/s10558-007-9044-6. Cardiovasc Eng. 2008. PMID: 18041584 Review.
-
Modeling perfusion in the cerebral vasculature.Med Eng Phys. 2008 Dec;30(10):1227-45. doi: 10.1016/j.medengphy.2008.09.008. Epub 2008 Nov 5. Med Eng Phys. 2008. PMID: 18980854 Review.
Cited by
-
Does hypercapnia-induced impairment of cerebral autoregulation affect neurovascular coupling? A functional TCD study.J Appl Physiol (1985). 2013 Aug 15;115(4):491-7. doi: 10.1152/japplphysiol.00327.2013. Epub 2013 Jun 6. J Appl Physiol (1985). 2013. PMID: 23743398 Free PMC article.
-
Continuous detection of cerebral vasodilatation and vasoconstriction using intracranial pulse morphological template matching.PLoS One. 2012;7(11):e50795. doi: 10.1371/journal.pone.0050795. Epub 2012 Nov 30. PLoS One. 2012. PMID: 23226385 Free PMC article.
-
The longitudinal evolution of cerebral blood flow regulation after acute ischaemic stroke.Cerebrovasc Dis Extra. 2014 Aug 26;4(2):186-97. doi: 10.1159/000366017. eCollection 2014 May. Cerebrovasc Dis Extra. 2014. PMID: 25298773 Free PMC article.
-
Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects.J Cereb Blood Flow Metab. 2017 Aug;37(8):2691-2705. doi: 10.1177/0271678X17709166. Epub 2017 May 25. J Cereb Blood Flow Metab. 2017. PMID: 28541158 Free PMC article.
-
Impact of different blood pressure targets on cerebral hemodynamics in septic shock: A prospective pilot study protocol-SEPSIS-BRAIN.PLoS One. 2024 Oct 14;19(10):e0304412. doi: 10.1371/journal.pone.0304412. eCollection 2024. PLoS One. 2024. PMID: 39401208 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials