Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Aug;13(3):264-72.
doi: 10.1016/s0969-9961(03)00041-x.

Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment

Affiliations
Comparative Study

Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment

Wim Derave et al. Neurobiol Dis. 2003 Aug.

Abstract

The present study was undertaken to identify the metabolic and contractile characteristics of fast- and slow-twitch skeletal muscles in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). In addition, we investigated the effects of oral creatine supplementation on muscle functional capacity in this model. Transgenic mice expressing a mutant (G93A) or wild type human SOD1 gene (WT) were supplemented with 2% creatine monohydrate from 60 to 120 days of age. Body weight, rotorod performance and grip strength were evaluated. In vitro contractility was evaluated on isolated m. soleus and m. extensor digitorum longus (EDL), and muscle metabolites were determined. Body weight, rotorod performance and grip strength were markedly decreased in G93A compared to WT mice, but were unaffected by creatine supplementation. Muscle ATP content decreased and glycogen content increased in G93A versus WT in both muscle types, but were unaffected by creatine supplementation. Muscle creatine content increased following creatine intake in G93A soleus. Twitch and tetanic contractions showed markedly slower contraction and relaxation times in G93A versus WT in both muscle types, with no positive effect of creatine supplementation. EDL but not soleus of G93A mice showed significant atrophy, which was partly abolished by creatine supplementation. It is concluded that overexpression of a mutant SOD1 transgene has profound effects on metabolic and contractile properties of both fast- and slow-twitch skeletal muscles. Furthermore, creatine intake does not exert a beneficial effect on muscle function in a transgenic mouse model of ALS.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources