Structure of gramicidin a in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data
- PMID: 12904055
- DOI: 10.1021/ja029317k
Structure of gramicidin a in a lipid bilayer environment determined using molecular dynamics simulations and solid-state NMR data
Abstract
Two different high-resolution structures recently have been proposed for the membrane-spanning gramicidin A channel: one based on solid-state NMR experiments in oriented phospholipid bilayers (Ketchem, R. R.; Roux, B.; Cross, T. A. Structure 1997, 5, 1655-1669; Protein Data Bank, PDB:1MAG); and one based on two-dimensional NMR in detergent micelles (Townsley, L. E.; Tucker, W. A.; Sham, S.; Hinton, J. F. Biochemistry 2001, 40, 11676-11686; PDB:1JNO). Despite overall agreement, the two structures differ in peptide backbone pitch and the orientation of several side chains; in particular that of the Trp at position 9. Given the importance of the peptide backbone and Trp side chains for ion permeation, we undertook an investigation of the two structures using molecular dynamics simulation with an explicit lipid bilayer membrane, similar to the system used for the solid-state NMR experiments. Based on 0.1 micros of simulation, both backbone structures converge to a structure with 6.25 residues per turn, in agreement with X-ray scattering, and broad agreement with SS backbone NMR observables. The side chain of Trp 9 is mobile, more so than Trp 11, 13, and 15, and undergoes spontaneous transitions between the orientations in 1JNO and 1MAG. Based on empirical fitting to the NMR results, and umbrella sampling calculations, we conclude that Trp 9 spends 80% of the time in the 1JNO orientation and 20% in the 1MAG orientation. These results underscore the utility of molecular dynamics simulations in the analysis and interpretation of structural information from solid-state NMR.
Similar articles
-
Gramicidin A backbone and side chain dynamics evaluated by molecular dynamics simulations and nuclear magnetic resonance experiments. I: molecular dynamics simulations.J Phys Chem B. 2011 Jun 9;115(22):7417-26. doi: 10.1021/jp200904d. Epub 2011 May 16. J Phys Chem B. 2011. PMID: 21574563 Free PMC article.
-
Modulating dipoles for structure-function correlations in the gramicidin A channel.Biochemistry. 1999 Jul 20;38(29):9185-97. doi: 10.1021/bi982981m. Biochemistry. 1999. PMID: 10413493
-
Gramicidin D conformation, dynamics and membrane ion transport.Biopolymers. 1999;51(2):129-44. doi: 10.1002/(SICI)1097-0282(1999)51:2<129::AID-BIP3>3.0.CO;2-Y. Biopolymers. 1999. PMID: 10397797
-
Model ion channels: gramicidin and alamethicin.J Membr Biol. 1992 Aug;129(2):109-36. doi: 10.1007/BF00219508. J Membr Biol. 1992. PMID: 1279177 Review.
-
The gramicidin ion channel: a model membrane protein.Biochim Biophys Acta. 2007 Sep;1768(9):2011-25. doi: 10.1016/j.bbamem.2007.05.011. Epub 2007 May 18. Biochim Biophys Acta. 2007. PMID: 17572379 Review.
Cited by
-
Molecular dynamics simulation of the P2Y14 receptor. Ligand docking and identification of a putative binding site of the distal hexose moiety.Bioorg Med Chem Lett. 2007 Feb 1;17(3):761-6. doi: 10.1016/j.bmcl.2006.10.081. Epub 2006 Oct 28. Bioorg Med Chem Lett. 2007. PMID: 17088057 Free PMC article.
-
Collective dynamics in lipid membranes containing transmembrane peptides.Soft Matter. 2021 Jun 16;17(23):5671-5681. doi: 10.1039/d1sm00314c. Soft Matter. 2021. PMID: 33942045 Free PMC article.
-
Three-dimensional stress field around a membrane protein: atomistic and coarse-grained simulation analysis of gramicidin A.Biophys J. 2013 Jan 8;104(1):117-27. doi: 10.1016/j.bpj.2012.11.3812. Epub 2013 Jan 8. Biophys J. 2013. PMID: 23332064 Free PMC article.
-
Energetics of ion conduction through the gramicidin channel.Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):117-22. doi: 10.1073/pnas.2635314100. Epub 2003 Dec 22. Proc Natl Acad Sci U S A. 2004. PMID: 14691245 Free PMC article.
-
Gating gramicidin channels in lipid bilayers: reaction coordinates and the mechanism of dissociation.Biophys J. 2004 Jan;86(1 Pt 1):92-104. doi: 10.1016/S0006-3495(04)74087-4. Biophys J. 2004. PMID: 14695253 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical