Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;285(6):H2848-56.
doi: 10.1152/ajpheart.00117.2003. Epub 2003 Aug 7.

Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy

Affiliations
Free article

Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy

Paul M A van Haaren et al. Am J Physiol Heart Circ Physiol. 2003 Dec.
Free article

Abstract

Endothelial cells are covered by a surface layer of membrane-associated proteoglycans, glycosaminoglycans, glycoproteins, glycolipids, and associated plasma proteins. This layer may limit transendothelial solute transport. We determined dimension and transport properties of this endothelial surface layer (ESL) in isolated arteries. Rat mesenteric small arteries (diameter approximately 150 microm) were isolated and cannulated with a double-barreled -pipette on the inlet side and a regular pipette on the outlet side. Dynamics and localization of intra-arterial fluorescence by FITC-labeled dextrans (FITC-Deltas) and the endothelial membrane dye DiI were determined with confocal microscopy. Large FITC-Delta (148 kDa) filled a core volume inside the arteries within 1 min but was excluded from a 2.6 +/- 0.5-microm-wide region on the luminal side of the endothelium during 30 min of dye perfusion. Medium FITC-Delta (50.7 kDa) slowly penetrated this ESL within 30 min but did not permeate into the arterial wall. Small FITC-Delta (4.4 kDa) quickly passed the ESL and accumulated in the arterial wall. Prolonged luminal fluorochrome illumination with a bright mercury lamp destroyed the approximately 3-microm exclusion zone for FITC-Delta 148 within a few minutes. This study demonstrates the presence of a thick ESL that contributes to the permeability barrier to solutes. The layer is sensitive to phototoxic stress, and its damage could form an early event in atherosclerosis.

PubMed Disclaimer

LinkOut - more resources