Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;285(6):H2670-8.
doi: 10.1152/ajpheart.00395.2003. Epub 2003 Aug 7.

Does whole body autoregulation mediate the hemodynamic responses to increased dietary salt in rats with clamped ANG II?

Affiliations
Free article

Does whole body autoregulation mediate the hemodynamic responses to increased dietary salt in rats with clamped ANG II?

Deborah M Fine et al. Am J Physiol Heart Circ Physiol. 2003 Dec.
Free article

Abstract

The present study was conducted to test the hypothesis that salt-dependent hypertension, in rats with an unresponsive renin-angiotensin system, is characterized by a "whole body autoregulation" hemodynamic profile. To test this hypothesis, rats were chronically instrumented to continuously measure cardiac output (CO) and arterial pressure (AP). A venous catheter was implanted for infusion of saline vehicle (Veh; n = 8) or treatment [enalapril (2 mg.kg-1.day-1) plus ANG II: ANG-NORM (5 ng.kg-1.min-1 ANG II, n = 8) or ANG-HI (10 ng.kg-1.min-1 ANG II, n = 9)] to pharmacologically clamp plasma ANG II. After a 10-day recovery period on a 0.1% NaCl diet, AP and CO were measured continuously for 5 days of control (0.1% NaCl), 7 days of high salt (4.0% NaCl), and 5 days of recovery (0.1% NaCl). Hemodynamics did not change in the Veh group at any time. AP increased by approximately 20 mmHg in the ANG-NORM and ANG-HI groups when NaCl was increased. Hypertension was mediated by an increase in CO of approximately 12% at steady state, with no change in total peripheral resistance (TPR) during the high salt period. AP returned to control levels when dietary sodium was decreased, mediated by a approximately 10% decrease in TPR, with CO remaining elevated. There was no difference in the hemodynamic responses to increased salt between the ANG-HI and ANG-NORM groups. We conclude that the whole body autoregulation hypothesis does not explain the hemodynamic profile of salt-dependent hypertension in rats with an unresponsive renin-angiotensin system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources