Does whole body autoregulation mediate the hemodynamic responses to increased dietary salt in rats with clamped ANG II?
- PMID: 12907421
- DOI: 10.1152/ajpheart.00395.2003
Does whole body autoregulation mediate the hemodynamic responses to increased dietary salt in rats with clamped ANG II?
Abstract
The present study was conducted to test the hypothesis that salt-dependent hypertension, in rats with an unresponsive renin-angiotensin system, is characterized by a "whole body autoregulation" hemodynamic profile. To test this hypothesis, rats were chronically instrumented to continuously measure cardiac output (CO) and arterial pressure (AP). A venous catheter was implanted for infusion of saline vehicle (Veh; n = 8) or treatment [enalapril (2 mg.kg-1.day-1) plus ANG II: ANG-NORM (5 ng.kg-1.min-1 ANG II, n = 8) or ANG-HI (10 ng.kg-1.min-1 ANG II, n = 9)] to pharmacologically clamp plasma ANG II. After a 10-day recovery period on a 0.1% NaCl diet, AP and CO were measured continuously for 5 days of control (0.1% NaCl), 7 days of high salt (4.0% NaCl), and 5 days of recovery (0.1% NaCl). Hemodynamics did not change in the Veh group at any time. AP increased by approximately 20 mmHg in the ANG-NORM and ANG-HI groups when NaCl was increased. Hypertension was mediated by an increase in CO of approximately 12% at steady state, with no change in total peripheral resistance (TPR) during the high salt period. AP returned to control levels when dietary sodium was decreased, mediated by a approximately 10% decrease in TPR, with CO remaining elevated. There was no difference in the hemodynamic responses to increased salt between the ANG-HI and ANG-NORM groups. We conclude that the whole body autoregulation hypothesis does not explain the hemodynamic profile of salt-dependent hypertension in rats with an unresponsive renin-angiotensin system.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
