Quantification of chemical vapors in chemosensory research
- PMID: 12907584
- DOI: 10.1093/chemse/28.6.467
Quantification of chemical vapors in chemosensory research
Abstract
Studies of olfaction and chemesthesis often rely on nominal, liquid-phase dilutions to quantify the chemicals tested, even though the associated vapor concentrations constitute the actual stimuli. For more than a decade now, our systematic studies of the olfactory and chemesthetic potency of members of homologous chemical series have routinely included quantification of vapors via gas chromatography. This article depicts the relationships between liquid- and vapor-phase concentrations for 60 volatile organic compounds and summarizes the theoretical and technical factors influencing these relationships. The data presented will allow other investigators working with these materials to express them as vapor concentrations even when they lack the resources to perform the analytical measurements. The paper represents a step toward creation of a practical archive for vapor quantification in chemosensory science.
Similar articles
-
Comparison of sensor characteristics of three real-time monitors for organic vapors.J Occup Health. 2015;57(1):13-9. doi: 10.1539/joh.14-0146-OA. Epub 2014 Nov 21. J Occup Health. 2015. PMID: 25422129
-
Determination of gas-liquid partition coefficients by gas chromatography.J Chromatogr A. 2004 May 28;1037(1-2):223-31. doi: 10.1016/j.chroma.2003.12.019. J Chromatogr A. 2004. PMID: 15214667 Review.
-
Odor and chemesthesis from brief exposures to TXIB.Indoor Air. 2005 Dec;15(6):445-57. doi: 10.1111/j.1600-0668.2005.00390.x. Indoor Air. 2005. PMID: 16268834
-
Dissolution kinetics of volatile organic compound vapors in water: An integrated experimental and computational study.J Contam Hydrol. 2017 Jan;196:43-51. doi: 10.1016/j.jconhyd.2016.12.004. Epub 2016 Dec 10. J Contam Hydrol. 2017. PMID: 27993467
-
Determination of vapor pressures using gas chromatography.J Chromatogr A. 2004 May 28;1037(1-2):107-14. doi: 10.1016/s0021-9673(03)01299-8. J Chromatogr A. 2004. PMID: 15214662 Review.
Cited by
-
Olfactory discrimination of aliphatic odorants at 1 ppm: too easy for CD-1 mice to show odor structure-activity relationships?J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Nov;194(11):971-80. doi: 10.1007/s00359-008-0370-y. Epub 2008 Sep 23. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008. PMID: 18810459
-
Profound context-dependent plasticity of mitral cell responses in olfactory bulb.PLoS Biol. 2008 Oct 28;6(10):e258. doi: 10.1371/journal.pbio.0060258. PLoS Biol. 2008. PMID: 18959481 Free PMC article.
-
Does it Matter How We Pose the Question "How is Your Sense of Smell?".Chemosens Percept. 2014;7(3-4):103-107. doi: 10.1007/s12078-014-9171-6. Epub 2014 Jul 29. Chemosens Percept. 2014. PMID: 25485033 Free PMC article.
-
Chemical Intolerance Is Associated With Altered Response Bias, not Greater Sensory Sensitivity.Iperception. 2020 Dec 20;11(6):2041669520978424. doi: 10.1177/2041669520978424. eCollection 2020 Nov-Dec. Iperception. 2020. PMID: 33425314 Free PMC article.
-
Cutoff in detection of eye irritation from vapors of homologous carboxylic acids and aliphatic aldehydes.Neuroscience. 2007 Mar 30;145(3):1130-7. doi: 10.1016/j.neuroscience.2006.12.032. Epub 2007 Jan 30. Neuroscience. 2007. PMID: 17270354 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources