Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug 1;63(15):4342-6.

Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells

Affiliations
  • PMID: 12907602

Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells

Francesco Bertolini et al. Cancer Res. .

Abstract

There is growing evidence that vasculogenesis (progenitor cell-derived generation of new blood vessels) is required for the growth of some neoplastic diseases. Here we show that the administration of cyclophosphamide (CTX) at the maximum tolerable dose with 21-day breaks or at more frequent low-dose (metronomic) schedules have opposite effects on the mobilization and viability of circulating endothelial progenitors (CEPs) in immunodeficient mice bearing human lymphoma cells. Animals treated with the maximum tolerable dose CTX experienced a robust CEP mobilization a few days after the end of a cycle of drug administration, and tumors rapidly became drug resistant. Conversely, the administration of metronomic CTX was associated with a consistent decrease in CEP numbers and viability and with more durable inhibition of tumor growth. Our findings suggest that metronomic low-dose chemotherapy regimens are particularly promising for avoiding CEP mobilization and, hence, to potentially reduce vasculogenesis-dependent mechanisms of tumor growth.

PubMed Disclaimer

Publication types

MeSH terms

Substances