Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct 31;278(44):43320-8.
doi: 10.1074/jbc.M305800200. Epub 2003 Aug 11.

The noncatalytic portion of human UDP-glucose: glycoprotein glucosyltransferase I confers UDP-glucose binding and transferase function to the catalytic domain

Affiliations
Free article

The noncatalytic portion of human UDP-glucose: glycoprotein glucosyltransferase I confers UDP-glucose binding and transferase function to the catalytic domain

Stacey M Arnold et al. J Biol Chem. .
Free article

Abstract

The eukaryotic cell monitors the fidelity of protein folding in the endoplasmic reticulum and only permits properly folded and/or assembled proteins to transit to the Golgi compartment in a process termed "quality control." An endoplasmic reticulum (ER) lumenal sensor for quality control is the UDP-glucose:glycoprotein glucosyltransferase that targets unfolded glycoproteins for transient, calcium-dependent glucosylation. This modification mediates glycoprotein interaction with the folding machinery comprised of calnexin or calreticulin in conjunction with ERp57. Two human UGT homologues, HUGT1 and HUGT2, exist that share 55% identity. The highest degree of identity resides in the COOH-terminal 20% of these proteins, the putative catalytic domain of HUGT1. However, only HUGT1 displays the expected functional activity. The contribution of the NH2-terminal remainder of HUGT1 to glucosyltransferase function is presently unknown. In this report we demonstrate that HUGT2 is localized to the ER in a manner that overlaps the distribution of HUGT1. Analysis of a series of HUGT1 and HUGT2 chimeric proteins demonstrated that the carboxyl-terminal region of HUGT2 contains a catalytic domain that is functional in place of the analogous portion of HUGT1. Whereas neither catalytic domain displayed detectable activity when expressed alone, co-expression of either catalytic domain with the noncatalytic amino-terminal portion of HUGT1 conferred UDP-Glc binding and transfer of glucose that was specific for unfolded glycoprotein substrates. The results indicate that the amino-terminal 80% of HUGT1 is required for activation of the catalytic domain, whereas the homologous portion of HUGT2 cannot provide this function.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources