Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug 29;308(3):439-44.
doi: 10.1016/s0006-291x(03)01420-7.

Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium

Affiliations

Thyroid hormone regulates mRNA expression and currents of ion channels in rat atrium

Hiroshi Watanabe et al. Biochem Biophys Res Commun. .

Abstract

Atrial fibrillation is one of the common arrhythmias associated with hyperthyroidism. This study examined the effects of thyroid hormone (T3) on mRNA expression and currents of major ionic channels determining the action potential duration (APD) in the rat atrium using the RNase protection assay and the whole-cell patch-clamp technique, respectively. T3 increased the Kv1.5 mRNA expression and decreased the L-type calcium channel mRNA expression, while the Kv4.2 mRNA expression did not change. APD was shorter in hyperthyroid than in euthyroid myocytes. The ultrarapid delayed rectifier potassium currents were remarkably increased in hyperthyroid than in euthyroid myocytes, whereas the transient outward potassium currents were unchanged. L-type calcium currents were decreased in hyperthyroid than in euthyroid myocytes. T3 shifted the current-voltage relationship for calcium currents negatively. In conclusion, T3 increased the outward currents and decreased the inward currents. The resultant changes of ionic currents shortened APD, providing a substrate for atrial fibrillation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources