Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep 15;56(4):347-59.
doi: 10.1002/neu.10240.

Denervation and age modify neuromuscular positional selectivity

Affiliations

Denervation and age modify neuromuscular positional selectivity

S R Chadaram et al. J Neurobiol. .

Abstract

The rostrocaudal position of neurons within the spinal motor pool maps systematically onto the surface of several muscles in mammals. In an effort to understand the mechanisms that generate such maps, we have been studying choices made by embryonic spinal cord neurons on muscle membrane substrates in the in vitro stripe assay. In this report we explore the effects of postnatal age of the muscle on neurite choice, and how prior denervation modifies this choice. Our results further differentiate rostral from caudal motor neurons in preferring one substrate to another. First, caudal neurites prefer to grow on P6 neonatal caudal over rostral membranes, but lose this ability to distinguish axial position of origin in older muscles. Rostral neurites prefer growth on rostral membranes, but this preference also diminishes with age. Second, when adult muscles have been denervated, both rostral and caudal neurites regain their positional growth selectivity. Third, caudal neurites are particularly sensitive to substrate choice. When growing on a preferred substrate (gluteus) caudal neurites prefer neonatal over adult membranes. These results support the concept of fundamental differences in the growth preferences of rostral and caudal spinal neurites. These differences will assist in the identification of molecular guidance cues that determine the formation of neuromuscular positional maps.

PubMed Disclaimer

Publication types

LinkOut - more resources