Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep 1;66(3):605-14.
doi: 10.1002/jbm.a.10585.

Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus

Affiliations

Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus

Darren S Gray et al. J Biomed Mater Res A. .

Abstract

Adherent cells are strongly influenced by the mechanical aspects of biomaterials, but little is known about the cellular effects of spatial variations in these properties. This work describes a novel method to produce polymeric cell culture surfaces containing micrometer-scale regions of variable stiffness. Substrates made of acrylamide or poly(dimethylsiloxane) were patterned with 100- or 10-microm resolution, respectively. Cells were cultured on fibronectin-coated acrylamide having Young's moduli of 34 kPa and 1.8 kPa, or fibronectin-coated PDMS having moduli of 2.5 MPa and 12 kPa. Over several days, NIH/3T3 cells and bovine pulmonary arterial endothelial cells accumulated preferentially on stiffer regions of substrates. The migration, not proliferation, of cells in response to mechanical patterning (mechanotaxis) was responsible for the accumulation of cells on stiffer regions. Differential remodeling of extracellular matrix protein on stiff versus compliant regions was observed by immunofluorescence staining, and may have been responsible for the observed mechanotaxis. These results suggest that mechanically patterned substrates might provide a general means to study mechanotaxis, and a new approach to patterning cells.

PubMed Disclaimer

Publication types

LinkOut - more resources