Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Sep;31(8):962-71.
doi: 10.1114/1.1590664.

Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom

Affiliations
Comparative Study

Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom

S Z Zhao et al. Ann Biomed Eng. 2003 Sep.

Abstract

A combined magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) modeling study was carried out for pulsatile flow in a carotid bifurcation phantom. The aim of the study was to quantify differences in flow patterns between MRI measurement and MRI-based CFD simulations and to further explore the potential for in vivo applications. The computational model was reconstructed from high resolution magnetic resonance (MR) scans. Velocities derived from phase-contrast MR measurements were used as boundary conditions for the CFD calculation. Detailed comparisons of velocity patterns were made between the CFD results and MRI measurements. Good agreement was achieved for the main velocity component in both well-behaved flow (in the common carotid) and disturbed region (in the carotid sinus). Comparison of in-plane velocity vectors showed less satisfactory consistency and revealed that the MR measurements obtained were inadequate to depict the secondary flow pattern as expected. It can be concluded that the combined MRI/CFD is expected to provide more reliable information about the full three-dimensional velocity field.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources