Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992;13(9):617-24.
doi: 10.1016/0142-9612(92)90030-r.

Bone tissue growth enhancement by calcium phosphate coatings on porous titanium alloys: the effect of shielding metal dissolution product

Affiliations
Free article
Comparative Study

Bone tissue growth enhancement by calcium phosphate coatings on porous titanium alloys: the effect of shielding metal dissolution product

P Ducheyne et al. Biomaterials. 1992.
Free article

Erratum in

  • Biomaterials 1992;13(11):800

Abstract

The possible mechanism of minimization of prosthesis-derived bone growth inhibitors by shielding of the metal and the reduction, if not elimination, of the associated metal dissolution was investigated. Titanium, aluminium and vanadium release rates were determined in vitro for Ti alloy specimens both with and without a calcium phosphate coating. Ti orderly oriented wire mesh (OOWM) porous coatings on Ti-6Al-4V substrates were used as the metal specimens. Half of the specimens were coated with a 75 microns calcium phosphate ceramic (CPC coating). Seven reference (OOWM) and seven coated (OOWM-CPC) specimens were immersed and placed along with seven control solutions for various periods in an incubator maintained at 37 degrees C and 5% CO2 - air atmosphere. Whereas the reference solutions showed a Ti release increasing as a function of time, the solutions that had the CPC-coated specimens contained no measurable amounts of titanium. The Al in solution around the CPC-coated specimens was significantly greater than the concentration around non-coated specimens. The Al, however, did not increase significantly with time, at least up to 4 wk immersion. The ceramic coating had a small beneficial effect on V concentration. In the absence of a significant adverse effect of Ti on local bone tissue formation, we focus on the Al data of our study. The possible adverse effect of this element is well documented. The calcium phosphate coating produced a significant increase of biological fixation, yet at the same time a greater Al release into solution, calling into question the significance of CPC coating in shielding adverse metal passive dissolution to explain enhanced bone growth [corrected].

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources