Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992;5(3-4):141-6.

Suggested mechanism for the formation of 15-hydroxyeicosatrienoic acid by rat epidermal microsomes

Affiliations
  • PMID: 1292524

Suggested mechanism for the formation of 15-hydroxyeicosatrienoic acid by rat epidermal microsomes

J Van Wauwe et al. Eicosanoids. 1992.

Abstract

We have previously demonstrated that rat epidermal microsomes NADPH-dependently convert 15(S)-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) into 15-hydroxy-5,8,11-eicosatrienoic acid (15-HETrE). The present study examines the mechanism of this reductive conversion. Rat epidermal microsomes were incubated with [1-14C]15-HPETE in the presence and absence of NADPH. Major reaction products were purified by high performance liquid chromatography (HPLC) and analyzed by gas chromatography-mass spectrometry (GC-MS), UV spectroscopy and/or cochromatography with standard products. In the presence of NADPH, 15-HPETE was transformed to 13-hydroxy-14,15-epoxy-5,8,11-eicosatrienoic acid (13-HEpETrE), 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), 15-keto-5,8,11-eicosatrienoic acid (15-KETrE) and 15-hydroxy-5,8,11-eicosatrienoic acid (15-HETrE). In the absence of NADPH, the microsomes reacted with 15-HPETE to form 13-HEpETrE, 15-keto-5,8,11,13-eicosatetraenoic acid (15-KETE) and 15-HETE. Furthermore, when supplemented with NADPH, epidermal microsomes converted 15-KETE to 15-KETrE, which was subsequently reduced to 15-HETrE. These data suggest that rat epidermal microsomes are capable of metabolizing 15-HPETE to 15-HETrE via the following reaction steps: conversion of HPETE to KETE, NADPH-dependent double bond saturation in KETE to KETrE and keto-reduction of the latter compound to HETrE.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources