Proper multivariate conditional autoregressive models for spatial data analysis
- PMID: 12925327
- DOI: 10.1093/biostatistics/4.1.11
Proper multivariate conditional autoregressive models for spatial data analysis
Abstract
In the past decade conditional autoregressive modelling specifications have found considerable application for the analysis of spatial data. Nearly all of this work is done in the univariate case and employs an improper specification. Our contribution here is to move to multivariate conditional autoregressive models and to provide rich, flexible classes which yield proper distributions. Our approach is to introduce spatial autoregression parameters. We first clarify what classes can be developed from the family of Mardia (1988) and contrast with recent work of Kim et al. (2000). We then present a novel parametric linear transformation which provides an extension with attractive interpretation. We propose to employ these models as specifications for second-stage spatial effects in hierarchical models. Two applications are discussed; one for the two-dimensional case modelling spatial patterns of child growth, the other for a four-dimensional situation modelling spatial variation in HLA-B allele frequencies. In each case, full Bayesian inference is carried out using Markov chain Monte Carlo simulation.
Similar articles
-
Generalized hierarchical multivariate CAR models for areal data.Biometrics. 2005 Dec;61(4):950-61. doi: 10.1111/j.1541-0420.2005.00359.x. Biometrics. 2005. PMID: 16401268
-
Hierarchical Bayesian spatial modelling of small-area rates of non-rare disease.Stat Med. 2003 May 30;22(10):1761-73. doi: 10.1002/sim.1463. Stat Med. 2003. PMID: 12720309
-
Hierarchical Bayesian spatiotemporal analysis of revascularization odds using smoothing splines.Stat Med. 2008 Jun 15;27(13):2381-401. doi: 10.1002/sim.3094. Stat Med. 2008. PMID: 17944001
-
[Statistical models for spatial analysis in parasitology].Parassitologia. 2004 Jun;46(1-2):75-8. Parassitologia. 2004. PMID: 15305691 Review. Italian.
-
A comparison of conditional autoregressive models used in Bayesian disease mapping.Spat Spatiotemporal Epidemiol. 2011 Jun;2(2):79-89. doi: 10.1016/j.sste.2011.03.001. Epub 2011 Mar 12. Spat Spatiotemporal Epidemiol. 2011. PMID: 22749587 Review.
Cited by
-
Historic and recent trends in county-level coronary heart disease death rates by race, gender, and age group, United States, 1979-2017.PLoS One. 2020 Jul 7;15(7):e0235839. doi: 10.1371/journal.pone.0235839. eCollection 2020. PLoS One. 2020. PMID: 32634156 Free PMC article.
-
Spatial disease mapping using directed acyclic graph auto-regressive (DAGAR) models.Bayesian Anal. 2019 Dec;14(4):1221-1244. doi: 10.1214/19-ba1177. Epub 2019 Oct 3. Bayesian Anal. 2019. PMID: 33859772 Free PMC article.
-
Hierarchical multivariate directed acyclic graph autoregressive models for spatial diseases mapping.Stat Med. 2022 Jul 20;41(16):3057-3075. doi: 10.1002/sim.9404. Epub 2022 Apr 6. Stat Med. 2022. PMID: 35708210 Free PMC article.
-
Small-area racial disparity in stroke mortality: an application of bayesian spatial hierarchical modeling.Epidemiology. 2009 Mar;20(2):234-41. doi: 10.1097/EDE.0b013e3181935aee. Epidemiology. 2009. PMID: 19142164 Free PMC article.
-
Smooth Scalar-on-Image Regression via Spatial Bayesian Variable Selection.J Comput Graph Stat. 2014 Jan 1;23(1):46-64. doi: 10.1080/10618600.2012.743437. J Comput Graph Stat. 2014. PMID: 24729670 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous