Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;130(19):4527-37.
doi: 10.1242/dev.00669.

Spatial and temporal patterns of ERK signaling during mouse embryogenesis

Affiliations

Spatial and temporal patterns of ERK signaling during mouse embryogenesis

Laura Beth Corson et al. Development. 2003 Oct.

Abstract

Signaling between tissues is essential to form the complex, three-dimensional organization of an embryo. Because many receptor tyrosine kinases signal through the RAS-MAPK pathway, phosphorylated ERK can be used as an indicator of when and where signaling is active during development. Using whole-mount immunohistochemistry with antibodies specific to phosphorylated ERK1 and ERK2, we analyzed the location, timing, distribution, duration and intensity of ERK signaling during mouse embryogenesis (5-10.5 days postcoitum). Spatial and temporal domains of ERK activation were discrete with well-defined boundaries, indicating specific regulation of signaling in vivo. Prominent, sustained domains of ERK activation were seen in the ectoplacental cone, extra-embryonic ectoderm, limb buds, branchial arches, frontonasal process, forebrain, midbrain-hindbrain boundary, tailbud, foregut and liver. Transient activation was seen in neural crest, peripheral nervous system, nascent blood vessels, and anlagen of the eye, ear and heart. In the contiguous domains of ERK signaling, phospho-ERK staining was cytoplasmic with no sign of nuclear translocation. With few exceptions, the strongest domains of ERK activation correlated with regions of known or suspected fibroblast growth factor (FGF) signaling, and brief incubation with an inhibitor of the fibroblast growth factor receptor (FGFR) specifically diminished the phospho-ERK staining in these regions. Although many domains of ERK activation were FGFR-dependent, not all domains of FGF signaling were phospho-ERK positive. These studies identify key domains of sustained ERK signaling in the intact mouse embryo, give significant insight into the regulation of this signaling in vivo and pinpoint regions where downstream target genes can be sought.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances