Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992;46(4-5):188-95.
doi: 10.1159/000468787.

Hyperoxia elevates Cu,Zn-superoxide dismutase of endothelial cells as detected by a sensitive ELISA

Affiliations

Hyperoxia elevates Cu,Zn-superoxide dismutase of endothelial cells as detected by a sensitive ELISA

S K Das et al. Enzyme. 1992.

Abstract

An enzyme-linked immunosorbent assay (ELISA) was developed for the measurement of bovine Cu,Zn-SOD. Accuracy of the ELISA and specificity of the antibody for cell-free extracts was established by: (1) measurement of antigen levels of bovine endothelial cell extracts reconstituted with pure antigen, and (2) immunoblotting with affinity purified antibody. The ELISA was highly sensitive and 0.05-0.10 ng of pure antigen could be accurately detected, which allowed the measurement of Cu,Zn-SOD in as few as 250 endothelial cells. With utilization of the ELISA for detection, DEAE-cellulose chromatography patterns of endothelial cell Cu,Zn-SOD overlapped those of pure bovine erythrocyte Cu,Zn-SOD. Exposure of cells in culture to 80% O2 for 48 h increased the relative abundance of the Cu,Zn-SOD as measured by the ELISA by 1.8-fold. Thus, endothelial cells in culture respond to hyperoxia by enhanced production of Cu,Zn-SOD protein. The ELISA developed in this study may be useful for assessing other factors that regulate cellular production of Cu,Zn-SOD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms