Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jan;12(1):41-52.
doi: 10.1016/0009-2797(76)90065-x.

Differential effects of mercurial compounds on excitable tissues

Differential effects of mercurial compounds on excitable tissues

A E Shamoo et al. Chem Biol Interact. 1976 Jan.

Abstract

Sarcoplasmic reticulum (SR), Ca2+ plus Mg2+-ATPase, and Ca2+-ionophore were obtained from white rabbit skeletal muscles. Methylmercury inhibited the Ca2+ plus Mg2+-ATPase and Ca2+-transport but had no effect on the Ca2+-ionophore. Mercuric chloride inhibited all three functions (i.e., ATPase, transport and ionophoric activity). The mechanism of HgCl2 inhibition of the Ca2+-ionophore was by competition with Ca2+ for Ca2+-ionophoric site whereas its inhibition of the enzyme and Ca2+-transport was due to the blockage of essential sulfhydryl (--SH) groups. Ca2+ plus Mg2+-ATPase and Ca2+-transport were more sensitive to methylmercury than to HgCl2. Acetylcholine receptor (AChR) was obtained for the electric organ of T. californica. Methylmercury inhibited the ACh binding to AChR WITH Ki = 5.7 - 10(-6) M. This effect was not due to mercuric ion alone since mercuric chloride up to 10(-4) M did not affect ACh binding to AChR. It is concluded that: the Ca2+ plus Mg2+-ATPase and Ca2+-transport contain --SH groups essential for their activity, and that the two functions are tightly coupled; the Ca2+-ionophore contains no --SH groups essential for its activity; CH3HgCl inhibition of Ca2+ plus Mg2+-ATPase and Ca2+-transport is partly due to its reactivity with --SH groups in hydrophobic environment; the Ca2+-transport is inhibited by HgCl2 through two processes, one which is the blockage of --SH groups and another which is the inhibition of the Ca2+-ionophoric site; and the inhibition of ACh binding to AChR is due to the blockage of --SH groups in hydrophobic environment, which is inaccessible to Hg2+. Our data present for the first time a molecular basis for the myopathy associated with mercurial compounds toxicity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources