A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4
- PMID: 12930888
- PMCID: PMC193593
- DOI: 10.1073/pnas.1834280100
A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4
Abstract
Mice carrying a truncated form of cAMP-responsive element binding protein (CREB)-binding protein (CBP) show several developmental abnormalities similar to patients with Rubinstein-Taybi syndrome (RTS). RTS patients suffer from mental retardation, whereas long-term memory formation is defective in mutant CBP mice. A critical role for cAMP signaling during CREB-dependent long-term memory formation appears to be evolutionarily conserved. From this observation, we reasoned that drugs that modulate CREB function by enhancing cAMP signaling might yield an effective treatment for the memory defect(s) of CBP+/- mice. To this end, we designed a cell-based drug screen and discovered inhibitors of phosphodiesterase 4 (PDE4) to be particularly effective enhancers of CREB function. We extend previous behavioral observations by showing that CBP+/- mutants have impaired long-term memory but normal learning and short-term memory in an object recognition task. We demonstrate that the prototypical PDE4 inhibitor, rolipram, and a novel one (HT0712) abolish the long-term memory defect of CBP+/- mice. Importantly, the genetic lesion in CBP acts specifically to shift the dose sensitivity for HT0712 to enhance memory formation, which conveys molecular specificity on the drug's mechanism of action. Our results suggest that PDE4 inhibitors may be used to treat the cognitive dysfunction of RTS patients.
Figures



Similar articles
-
Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration.Neuron. 2004 Jun 24;42(6):947-59. doi: 10.1016/j.neuron.2004.05.021. Neuron. 2004. PMID: 15207239
-
Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism.Hum Mol Genet. 1999 Mar;8(3):387-96. doi: 10.1093/hmg/8.3.387. Hum Mol Genet. 1999. PMID: 9949198
-
Inhibition of the phosphodiesterase 4 (PDE4) enzyme reverses memory deficits produced by infusion of the MEK inhibitor U0126 into the CA1 subregion of the rat hippocampus.Neuropsychopharmacology. 2004 Aug;29(8):1432-9. doi: 10.1038/sj.npp.1300440. Neuropsychopharmacology. 2004. PMID: 15114341
-
Rubinstein-Taybi syndrome: molecular findings and therapeutic approaches to improve cognitive dysfunction.Cell Mol Life Sci. 2006 Aug;63(15):1725-35. doi: 10.1007/s00018-005-5555-8. Cell Mol Life Sci. 2006. PMID: 16786226 Free PMC article. Review.
-
Selective phosphodiesterase (PDE)-4 inhibitors: a novel approach to treating memory deficit?Drugs R D. 2006;7(2):63-71. doi: 10.2165/00126839-200607020-00001. Drugs R D. 2006. PMID: 16542053 Review.
Cited by
-
Phosphodiesterase inhibition rescues chronic cognitive deficits induced by traumatic brain injury.J Neurosci. 2013 Mar 20;33(12):5216-26. doi: 10.1523/JNEUROSCI.5133-12.2013. J Neurosci. 2013. PMID: 23516287 Free PMC article.
-
A biphasic and brain-region selective down-regulation of cyclic adenosine monophosphate concentrations supports object recognition in the rat.PLoS One. 2012;7(2):e32244. doi: 10.1371/journal.pone.0032244. Epub 2012 Feb 16. PLoS One. 2012. PMID: 22359674 Free PMC article.
-
The role of histone acetylation in memory formation and cognitive impairments.Neuropsychopharmacology. 2013 Jan;38(1):62-76. doi: 10.1038/npp.2012.86. Epub 2012 Jun 6. Neuropsychopharmacology. 2013. PMID: 22669172 Free PMC article. Review.
-
Disrupted-in-Schizophrenia-1.Curr Psychiatry Rep. 2008 Apr;10(2):140-7. doi: 10.1007/s11920-008-0025-2. Curr Psychiatry Rep. 2008. PMID: 18474207 Review.
-
Epigenetic memory: the Lamarckian brain.EMBO J. 2014 May 2;33(9):945-67. doi: 10.1002/embj.201387637. Epub 2014 Apr 9. EMBO J. 2014. PMID: 24719207 Free PMC article. Review.
References
-
- Rubinstein, J. H. & Taybi, H. (1963) Am. J. Dis. Child. 105, 588-608. - PubMed
-
- Hennekam, R. C., Baselier, A. C., Beyaert, E., Bos, A., Blok, J. B., Jansma, H. B., Thorbecke-Nilsen, V. V. & Veerman, H. (1992) Am. J. Mental Retard. 96, 645-660. - PubMed
-
- Cantani, A. & Gagliesi, D. (1998) Eur. Rev. Med. Pharmacol. Sci. 2, 81-87. - PubMed
-
- Petrij, F., Giles, R. H., Dauwerse, H. G., Saris, J. J., Hennekam, R. C., Masuno, M., Tommerup, N., van Ommen, G. J., Goodman, R. H., Peters, D. J., et al. (1995) Nature 376, 348-351. - PubMed
-
- Petrij, F., Dorsman, J. C., Dauwerse, H. G., Giles, R. H., Peeters, T., Hennekam, R. C., Breuning, M. H. & Peters, D. J. (2000) Am. J. Med. Genet. 92, 47-52. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases