Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug 21;424(6951):938-42.
doi: 10.1038/nature01868.

Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain

Affiliations

Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain

Jeffrey A M Coull et al. Nature. .

Abstract

Modern pain-control theory predicts that a loss of inhibition (disinhibition) in the dorsal horn of the spinal cord is a crucial substrate for chronic pain syndromes. However, the nature of the mechanisms that underlie such disinhibition has remained controversial. Here we present evidence for a novel mechanism of disinhibition following peripheral nerve injury. It involves a trans-synaptic reduction in the expression of the potassium-chloride exporter KCC2, and the consequent disruption of anion homeostasis in neurons of lamina I of the superficial dorsal horn, one of the main spinal nociceptive output pathways. In our experiments, the resulting shift in the transmembrane anion gradient caused normally inhibitory anionic synaptic currents to be excitatory, substantially driving up the net excitability of lamina I neurons. Local blockade or knock-down of the spinal KCC2 exporter in intact rats markedly reduced the nociceptive threshold, confirming that the reported disruption of anion homeostasis in lamina I neurons was sufficient to cause neuropathic pain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms