Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003;5(5):235-8.
doi: 10.1186/ar991. Epub 2003 Aug 8.

Current state of cartilage tissue engineering

Affiliations
Review

Current state of cartilage tissue engineering

Richard Tuli et al. Arthritis Res Ther. 2003.

Abstract

Damage to cartilage is of great clinical consequence given the tissue's limited intrinsic potential for healing. Current treatments for cartilage repair are less than satisfactory, and rarely restore full function or return the tissue to its native normal state. The rapidly emerging field of tissue engineering holds great promise for the generation of functional cartilage tissue substitutes. The general approach involves a biocompatible, structurally and mechanically sound scaffold, with an appropriate cell source, which is loaded with bioactive molecules that promote cellular differentiation and/or maturation. This review highlights aspects of current progress in cartilage tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Kamil SH, Kojima K, Vacanti MP, Bonassar LJ, Vacanti CA, Eavey RD. In vitro tissue engineering to generate a human-sized auricle and nasal tip. Laryngoscope. 2003;113:90–94. - PubMed
    1. Aston JE, Bentley G. Repair of articular surfaces by allografts of articular and growth-plate cartilage. J Bone Joint Surg Br. 1986;68:29–35. - PubMed
    1. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–895. - PubMed
    1. Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 1993;27:11–23. - PubMed
    1. Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res. 1997;34:211–220. - PubMed

MeSH terms

Substances

LinkOut - more resources