Use of surface EMG for studying motor unit recruitment during isometric linear force ramp
- PMID: 12932415
- DOI: 10.1016/s1050-6411(03)00026-9
Use of surface EMG for studying motor unit recruitment during isometric linear force ramp
Abstract
The aim of this work was to demonstrate the rank order of motor unit (MU) recruitment by surface EMG based on a Laplacian detection technique and to document the MU features at their recruitment threshold. Surface EMG signals were recorded on the biceps brachii of 10 healthy subjects during linear force ramps. When achievable, the signals were decomposed into MU action potential (MUAP) trains. MU inter-pulse interval (IPI), conduction velocity (MUCV) and amplitude were estimated on the first 12 MUAPs of each detectable train in order to characterize the MU features at their firing onset. A strong correlation was found between MU recruitment threshold and IPI, MUCV, and amplitude, showing that the size principle can be demonstrated by a fully non-invasive EMG technique. However, signal decomposition was not possible on seven subjects due to the effects of the volume conductor when the skinfold thickness was too large. When requirements for an optimal detection of MUAP trains are met, surface EMG may be used to improve our understanding of MU activity.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous