Spatial modelling of individual-level parasite counts using the negative binomial distribution
- PMID: 12933567
- DOI: 10.1093/biostatistics/1.4.453
Spatial modelling of individual-level parasite counts using the negative binomial distribution
Erratum in
- Biostatistics. 2012 Apr;13(2):369
Abstract
We present a spatial model for the mean and correlation of highly dispersed count data, and apply it to individual-level counts of the nematode Wuchereria bancrofti, a parasite of humans which causes the disease lymphatic filariasis. Our model uses the negative binomial distribution, whose shape parameter is a convenient index of over-dispersion. Spatial association is quantified in terms of a characteristic length, which has an intuitive interpretation as the distance over which correlation decreases by half. Demographic surveillance and mapping enable us to include individual-level covariates such as age and sex. We discuss the distinctive features of our model and interpret the results in terms of the epidemiology of lymphatic filariasis and possible implications for control programmes.
Similar articles
-
Count data distributions and their zero-modified equivalents as a framework for modelling microbial data with a relatively high occurrence of zero counts.Int J Food Microbiol. 2010 Jan 1;136(3):268-77. doi: 10.1016/j.ijfoodmicro.2009.10.016. Epub 2009 Oct 28. Int J Food Microbiol. 2010. PMID: 19913934
-
Genetic heterogeneity of Wuchereria bancrofti populations at spatially hierarchical levels in Pondicherry and surrounding areas, south India.Infect Genet Evol. 2008 Sep;8(5):644-52. doi: 10.1016/j.meegid.2008.06.002. Epub 2008 Jun 26. Infect Genet Evol. 2008. PMID: 18634904
-
Short communication: Negative spatial association between lymphatic filariasis and malaria in West Africa.Trop Med Int Health. 2006 Feb;11(2):129-35. doi: 10.1111/j.1365-3156.2005.01558.x. Trop Med Int Health. 2006. PMID: 16451336
-
Identification of a molecular marker for genotyping human lymphatic filarial nematode parasite Wuchereria bancrofti.Exp Parasitol. 2007 May;116(1):59-65. doi: 10.1016/j.exppara.2006.11.011. Epub 2007 Jan 23. Exp Parasitol. 2007. PMID: 17250828
-
Recent advances in epidemiological field techniques in filariasis.Southeast Asian J Trop Med Public Health. 1993;24 Suppl 2:40-4. Southeast Asian J Trop Med Public Health. 1993. PMID: 7973945 Review.
Cited by
-
Spatial statistics is a comprehensive tool for quantifying cell neighbor relationships and biological processes via tissue image analysis.Cell Rep Methods. 2022 Nov 21;2(11):100348. doi: 10.1016/j.crmeth.2022.100348. eCollection 2022 Nov 21. Cell Rep Methods. 2022. PMID: 36452868 Free PMC article. Review.
-
Spatial and genetic epidemiology of hookworm in a rural community in Uganda.PLoS Negl Trop Dis. 2010 Jun 15;4(6):e713. doi: 10.1371/journal.pntd.0000713. PLoS Negl Trop Dis. 2010. PMID: 20559556 Free PMC article.
-
Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania.Trop Med Int Health. 2006 Apr;11(4):490-503. doi: 10.1111/j.1365-3156.2006.01594.x. Trop Med Int Health. 2006. PMID: 16553932 Free PMC article.
-
Spatial analysis of cluster randomised trials: a systematic review of analysis methods.Emerg Themes Epidemiol. 2017 Sep 21;14:12. doi: 10.1186/s12982-017-0066-2. eCollection 2017. Emerg Themes Epidemiol. 2017. PMID: 28947911 Free PMC article. Review.
-
A new approach to modelling schistosomiasis transmission based on stratified worm burden.Parasitology. 2010 Nov;137(13):1951-65. doi: 10.1017/S0031182010000867. Epub 2010 Jul 13. Parasitology. 2010. PMID: 20624336 Free PMC article.
LinkOut - more resources
Full Text Sources