Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;144(9):4204-14.
doi: 10.1210/en.2003-0190.

Dual role of SRC homology domain 2-containing inositol phosphatase 2 in the regulation of platelet-derived growth factor and insulin-like growth factor I signaling in rat vascular smooth muscle cells

Affiliations

Dual role of SRC homology domain 2-containing inositol phosphatase 2 in the regulation of platelet-derived growth factor and insulin-like growth factor I signaling in rat vascular smooth muscle cells

Toshiyasu Sasaoka et al. Endocrinology. 2003 Sep.

Abstract

Src homology domain 2 (SH2)-containing inositol phosphatase 2 (SHIP2) possesses 5-phosphatase activity and an SH2 domain. The role of SHIP2 in platelet-derived growth factor (PDGF) and IGF-I signaling was studied by expressing wild-type (WT-) and a catalytically defective (Delta IP-) SHIP2 into rat aortic smooth muscle cells by adenovirus-mediated gene transfer. PDGF- and IGF-I-induced tyrosine phosphorylation of their respective receptors and phosphatidylinositol 3-kinase (PI3-kinase) activity were not affected by the expression of either WT- or Delta IP-SHIP2. SHIP2 possessed 5'-phosphatase activity to hydrolyze the PI3-kinase product phosphatidylinositol 3,4,5-trisphosphate in vivo. Akt and glycogen synthase kinase 3beta are known to be downstream molecules of PI3-kinase, leading to the antiapoptotic effect. Overexpression of WT-SHIP2 inhibited PDGF- and IGF-I-induced phosphorylation of these molecules and the protective effect of poly(ADP-ribose) polymerase degradation, whereas these phosphorylations and the protective effect were enhanced by the expression of Delta IP-SHIP2, which functions in a dominant negative fashion. Regarding the Ras-MAPK pathway, PDGF- and IGF-I-induced tyrosine phosphorylation of Shc was not affected by the expression of either WT- or Delta IP-SHIP2, whereas both expressed SHIP2 associated with Shc. Importantly, PDGF and IGF-I stimulation of Shc/Grb2 binding, MAPK activation, and 5-bromo-2'-deoxyuridine incorporation were all decreased in both WT- and Delta IP-SHIP2 expression. These results indicate that SHIP2 plays a negative regulatory role in PDGF and IGF-I signaling in vascular smooth muscle cells. As the bifunctional role, our results suggest that SHIP2 regulates PDGF- and IGF-I-mediated signaling downstream of PI3-kinase, leading to the antiapoptotic effect via 5-phosphatase activity, and that SHIP2 regulates the growth factor-induced Ras-MAPK pathway mainly via the SH2 domain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources