Transcription elongation factors repress transcription initiation from cryptic sites
- PMID: 12934008
- DOI: 10.1126/science.1087374
Transcription elongation factors repress transcription initiation from cryptic sites
Abstract
Previous studies have suggested that transcription elongation results in changes in chromatin structure. Here we present studies of Saccharomyces cerevisiae Spt6, a conserved protein implicated in both transcription elongation and chromatin structure. Our results show that, surprisingly, an spt6 mutant permits aberrant transcription initiation from within coding regions. Furthermore, transcribed chromatin in the spt6 mutant is hypersensitive to micrococcal nuclease, and this hypersensitivity is suppressed by mutational inactivation of RNA polymerase II. These results suggest that Spt6 plays a critical role in maintaining normal chromatin structure during transcription elongation, thereby repressing transcription initiation from cryptic promoters. Other elongation and chromatin factors, including Spt16 and histone H3, appear to contribute to this control.
Comment in
-
Transcription. Histones face the FACT.Science. 2003 Aug 22;301(5636):1053-5. doi: 10.1126/science.1088901. Science. 2003. PMID: 12933997 No abstract available.
Similar articles
-
The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations.Mol Cell. 2015 Jun 18;58(6):1113-23. doi: 10.1016/j.molcel.2015.03.030. Epub 2015 May 7. Mol Cell. 2015. PMID: 25959393 Free PMC article.
-
Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions.Mol Cell. 2006 Feb 3;21(3):405-16. doi: 10.1016/j.molcel.2005.12.010. Mol Cell. 2006. PMID: 16455495
-
Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae.G3 (Bethesda). 2016 Aug 9;6(8):2489-504. doi: 10.1534/g3.116.030346. G3 (Bethesda). 2016. PMID: 27261007 Free PMC article.
-
Insights into Spt6: a histone chaperone that functions in transcription, DNA replication, and genome stability.Trends Genet. 2023 Nov;39(11):858-872. doi: 10.1016/j.tig.2023.06.008. Epub 2023 Jul 20. Trends Genet. 2023. PMID: 37481442 Free PMC article. Review.
-
ISWI complexes in Saccharomyces cerevisiae.Biochim Biophys Acta. 2004 Mar 15;1677(1-3):100-12. doi: 10.1016/j.bbaexp.2003.10.014. Biochim Biophys Acta. 2004. PMID: 15020051 Review.
Cited by
-
Gene regulation by the act of long non-coding RNA transcription.BMC Biol. 2013 May 30;11:59. doi: 10.1186/1741-7007-11-59. BMC Biol. 2013. PMID: 23721193 Free PMC article. Review.
-
FACT interacts with Set3 HDAC and fine-tunes GAL1 transcription in response to environmental stimulation.Nucleic Acids Res. 2021 Jun 4;49(10):5502-5519. doi: 10.1093/nar/gkab312. Nucleic Acids Res. 2021. PMID: 33963860 Free PMC article.
-
reSETting chromatin during transcription elongation.Epigenetics. 2013 Jan;8(1):10-5. doi: 10.4161/epi.23333. Epub 2012 Dec 20. Epigenetics. 2013. PMID: 23257840 Free PMC article. Review.
-
Chaperoning RNA Polymerase II through repressive chromatin.EMBO J. 2013 Apr 17;32(8):1067-8. doi: 10.1038/emboj.2013.64. Epub 2013 Mar 15. EMBO J. 2013. PMID: 23503587 Free PMC article.
-
Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae.Mol Cell Biol. 2006 Feb;26(4):1496-509. doi: 10.1128/MCB.26.4.1496-1509.2006. Mol Cell Biol. 2006. PMID: 16449659 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases