Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep 1;188(5):653-60.
doi: 10.1086/377453. Epub 2003 Aug 14.

Enhanced prediction of lopinavir resistance from genotype by use of artificial neural networks

Affiliations

Enhanced prediction of lopinavir resistance from genotype by use of artificial neural networks

Dechao Wang et al. J Infect Dis. .

Abstract

Our objective was to accurately predict, from complex mutation patterns, human immunodeficiency virus type 1 resistance to the protease inhibitor lopinavir, by use of artificial intelligence. Two neural network models were constructed: 1 based on changes at 11 positions in the protease that were previously recognized as being significant for lopinavir resistance and another based on a newly derived set of 28 mutations that were identified by performing category prevalence analysis. Both models were trained, validated, and tested with 1322 clinical samples. A procedure of determining the optimal neural network parameters was proposed to speed up the training processes. The results suggested that the 28-mutation set was a more accurate predictor of lopinavir susceptibility (correlation coefficient, R2=0.88). We identified potentially significant new mutations associated with lopinavir resistance and demonstrated the utility of neural network models in predicting phenotypic susceptibility from complex genotypes.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources