Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Sep 1;62(1):70-82.
doi: 10.1002/jemt.10382.

Imaging dislocations in ice

Affiliations
Review

Imaging dislocations in ice

I Baker. Microsc Res Tech. .

Abstract

Three techniques have been used to study dislocations in ice: etch pitting-replication, transmission electron microscopy, and X-ray topography (XT). It is shown that, because ice is a weak absorber of X-rays and can be produced with a low dislocation density, allowing relatively thick specimens to be studied, the most useful technique is XT. The observations that have been made with conventional XT are briefly outlined. However, the introduction of high-intensity synchrotron radiation, with its concomitant short exposure times, showed that images obtained through conventional XT observations were of dislocations that had undergone recovery. The important dynamic observations and measurements that have been made using synchrotron X-ray topography are presented. Dynamic synchrotron X-ray topography observations of ice single crystals undergoing deformation in situ have shown that slip mainly occurs by the movement of screw and 60 degrees (1/3) [1120] dislocations on the basal plane, although non-basal slip by edge dislocations can also occur. The operation of Frank-Read and other dislocation multiplication sources have been clearly demonstrated and dislocation velocities have been measured. In contrast, in polycrystals, dislocation generation occurred at grain boundaries where there are stress concentrations before lattice dislocation generation mechanisms operate. Faulted dislocation loops have been determined to be mainly interstitial in both polycrystals and single crystals.

PubMed Disclaimer

Publication types

LinkOut - more resources