A relative survival regression model using B-spline functions to model non-proportional hazards
- PMID: 12939785
- DOI: 10.1002/sim.1484
A relative survival regression model using B-spline functions to model non-proportional hazards
Abstract
Relative survival, a method for assessing prognostic factors for disease-specific mortality in unselected populations, is frequently used in population-based studies. However, most relative survival models assume that the effects of covariates on disease-specific mortality conform with the proportional hazards hypothesis, which may not hold in some long-term studies. To accommodate variation over time of a predictor's effect on disease-specific mortality, we developed a new relative survival regression model using B-splines to model the hazard ratio as a flexible function of time, without having to specify a particular functional form. Our method also allows for testing the hypotheses of hazards proportionality and no association on disease-specific hazard. Accuracy of estimation and inference were evaluated in simulations. The method is illustrated by an analysis of a population-based study of colon cancer.
Copyright 2003 John Wiley & Sons, Ltd.
Similar articles
-
Assessing time-by-covariate interactions in relative survival models using restrictive cubic spline functions.J Cancer Epidemiol Prev. 2002;7(3):113-22. J Cancer Epidemiol Prev. 2002. PMID: 12665210
-
Analysis of time-dependent covariates in a regressive relative survival model.Stat Med. 2005 Dec 30;24(24):3863-70. doi: 10.1002/sim.2400. Stat Med. 2005. PMID: 16320266
-
Comparison of Cox's and relative survival models when estimating the effects of prognostic factors on disease-specific mortality: a simulation study under proportional excess hazards.Stat Med. 2005 Dec 30;24(24):3887-909. doi: 10.1002/sim.2392. Stat Med. 2005. PMID: 16320267
-
Flexible survival regression modelling.Stat Methods Med Res. 2010 Feb;19(1):5-28. doi: 10.1177/0962280209105022. Epub 2009 Jul 16. Stat Methods Med Res. 2010. PMID: 19608605 Review.
-
Modeling survival in colon cancer: a methodological review.Mol Cancer. 2007 Feb 12;6:15. doi: 10.1186/1476-4598-6-15. Mol Cancer. 2007. PMID: 17295918 Free PMC article. Review.
Cited by
-
Hazard regression model and cure rate model in colon cancer relative survival trends: are they telling the same story?Eur J Epidemiol. 2008;23(4):251-9. doi: 10.1007/s10654-008-9226-6. Epub 2008 Feb 9. Eur J Epidemiol. 2008. PMID: 18264781
-
A class of transformation covariate regression models for estimating the excess hazard in relative survival analysis.Am J Epidemiol. 2013 Apr 1;177(7):708-17. doi: 10.1093/aje/kws288. Epub 2013 Mar 13. Am J Epidemiol. 2013. PMID: 23492766 Free PMC article.
-
A Case Study Examining the Usefulness of Cure Modelling for the Prediction of Survival Based on Data Maturity.Pharmacoeconomics. 2020 Apr;38(4):385-395. doi: 10.1007/s40273-019-00867-5. Pharmacoeconomics. 2020. PMID: 31848900
-
Work-Related Factors and Lung Cancer Survival: A Population-Based Study in Switzerland (1990-2014).Int J Environ Res Public Health. 2022 Oct 25;19(21):13856. doi: 10.3390/ijerph192113856. Int J Environ Res Public Health. 2022. PMID: 36360735 Free PMC article.
-
Comparison of model-building strategies for excess hazard regression models in the context of cancer epidemiology.BMC Med Res Methodol. 2019 Nov 20;19(1):210. doi: 10.1186/s12874-019-0830-9. BMC Med Res Methodol. 2019. PMID: 31747928 Free PMC article.