Modular and tunable chemosensor scaffold for divalent zinc
- PMID: 12940742
- DOI: 10.1021/ja0355980
Modular and tunable chemosensor scaffold for divalent zinc
Abstract
A modular peptide scaffold has been developed for fluorescent sensing of divalent zinc. The signaling component of the chemosensor is the chelation-sensitive fluorophore 8-hydroxy-5-(N,N-dimethylsulfonamido)-2-methylquinoline, which is prepared as the protected amino acid derivative Fmoc-Sox-OH and integrated into peptide sequences. Nineteen synthetic peptides incorporating the signaling element exhibit a range of affinities for Zn(2+) through variation of the type and number of Zn(2+) ligands, ligand arrangement and the beta-turn sequence that acts as a preorganization element between the ligands. The stoichiometry of the peptide-Zn(2+) complexes is evaluated by several criteria. The fluorescence response of these peptides to pH and various important metal ions is reported. Eleven of these sequences form only 1:1 complexes with Zn(2+) and their affinities range from 10 nM to nearly 1 microM. When used in concert, these sensors can provide Zn(2+) concentration information in a valuable range.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
