Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;83(9):816-30.

Effect of computer keyboard slope on wrist position and forearm electromyography of typists without musculoskeletal disorders

Affiliations
  • PMID: 12940768

Effect of computer keyboard slope on wrist position and forearm electromyography of typists without musculoskeletal disorders

Guy G Simoneau et al. Phys Ther. 2003 Sep.

Abstract

Background and purpose: Positioning a computer keyboard with a downward slope reduces wrist extension needed to use the keyboard and has been shown to decrease pressure in the carpal tunnel. However, whether a downward slope of the keyboard reduces electromyographic (EMG) activity of the forearm muscles, in particular the wrist extensors, is not known.

Subjects and methods: Sixteen experienced typists participated in this study and typed on a conventional keyboard that was placed on slopes at angles of 7.5, 0, -7.5, and -15 degrees. Electromyographic activity of the extensor carpi ulnaris (ECU), flexor carpi ulnaris (FCU), and flexor carpi radialis (FCR) muscles was measured with surface electrodes, while the extension and ulnar deviation angles of the right and left wrists were measured with electrogoniometers.

Results: Wrist extension angle decreased from approximately 12 degrees of extension while typing on a keyboard with a 7.5-degree slope to 3 degrees of flexion with the keyboard at a slope of -15 degrees. Although the differences were in the range of 1% to 3% of maximum voluntary contraction (MVC), amplitude probability distribution function (APDF) of root-mean-square EMG data points from the ECU, FCU, and FCR muscles varied across keyboard slopes.

Discussion and conclusion: Wrist extension decreased as the keyboard slope decreased. Furthermore, a slight decrease in percentage of MVC of the ECU muscle was noted as the keyboard slope decreased. Based on biomechanical modeling and published work on carpal tunnel pressure, both of these findings appear to be positive with respect to comfort and fatigue, but the exact consequences of these findings on the reduction or prevention of injuries have yet to be determined. The results may aid physical therapists and ergonomists in their evaluations of computer keyboard workstations and in making recommendations for interventions with regard to keyboard slope angle.

PubMed Disclaimer

Similar articles

Cited by

Publication types