Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Oct;45(5):575-84.
doi: 10.1016/s0028-3908(03)00205-3.

Modulation of GABA release during morphine withdrawal in midbrain neurons in vitro

Affiliations
Comparative Study

Modulation of GABA release during morphine withdrawal in midbrain neurons in vitro

Stephen P Hack et al. Neuropharmacology. 2003 Oct.

Abstract

Chronic treatment with opioids induces adaptations in neurons leading to tolerance and dependence. Studies have implicated the midbrain periaqueductal gray (PAG) in the expression of many signs of withdrawal. Patch-clamp recording techniques were used to examine whether augmentation of adenylyl cyclase signalling produces hyperexcitation in GABAergic nerve terminals within the mouse PAG. Both the rate of mIPSCs and the amplitude of evoked IPSCs during naloxone-precipitated withdrawal was profoundly enhanced in chronically morphine treated mice, compared to vehicle treated controls, in the presence but not the absence an adenosine A(1) receptor antagonist DPCPX. Enhanced GABAergic transmission in the presence of DPCPX was abolished by blocking protein kinase A. Inhibitors of cAMP transport, phosphodiesterase and nucleotide transport mimicked the effect of DPCPX. Coupling efficacy of micro-receptors to presynaptic inhibition of GABA release was increased in dependent mice in the presence of DPCPX. The increased coupling efficacy was abolished by blocking protein kinase A, which unmasked an underlying micro-receptor tolerance. These findings indicate that enhanced adenylyl cyclase signalling following chronic morphine treatment produces (1) GABAergic terminal hyperexcitability during withdrawal that is retarded by a concomitant increase in endogenous adenosine, and (2) enhanced micro-receptor coupling to presynaptic inhibition that overcomes an underlying tolerance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources