Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep 10;289(1):95-107.
doi: 10.1016/s0014-4827(03)00222-2.

NUFIP1 (nuclear FMRP interacting protein 1) is a nucleocytoplasmic shuttling protein associated with active synaptoneurosomes

Affiliations

NUFIP1 (nuclear FMRP interacting protein 1) is a nucleocytoplasmic shuttling protein associated with active synaptoneurosomes

Barbara Bardoni et al. Exp Cell Res. .

Abstract

Fragile X syndrome, the most common cause of inherited mental retardation, is caused by the absence of FMRP (Fragile X Mental Retardation Protein). FMRP is an RNA binding protein reported to be involved in translational control, notably at postsynaptic sites of protein synthesis as a part of a multiprotein/mRNA complex. One of the FMRP interactors, NUFIP1, is an RNA binding protein with an expression profile matching that of FMRP. We now show that in the nucleus NUFIP1 is localized in the nuclear matrix in RNA-containing structures lying in the proximity of, but not overlapping with, sites of nascent RNA. NUFIP1 is also present in the cytoplasm, where it is associated with ribosomes, similarly to FMRP. In neurons NUFIP1 can be detected in functional synaptoneurosomes, colocalizing with ribosomes. Consistent with its subcellular localization in both nucleus and cytoplasm, we show that NUFIP1 contains a functional CRM1-dependent nuclear export signal and is able to shuttle between these two cellular compartments. These findings suggest the involvement of NUFIP1 in the export and localization of mRNA and, in association with FMRP, in the regulation of local protein synthesis near synapses.

PubMed Disclaimer

Publication types

MeSH terms