Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;52(9):2315-20.
doi: 10.2337/diabetes.52.9.2315.

An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures

Affiliations

An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures

Robert G Bennett et al. Diabetes. 2003 Sep.

Abstract

Amylin (islet amyloid polypeptide) is the chief component of the islet amyloid found in type 2 diabetes, and amylin fibril precursors may be cytotoxic to pancreatic beta-cells. Little is known about the prevention of amylin aggregation. We investigated the role of insulin-degrading enzyme (IDE) in amylin degradation, amyloid deposition, and cytotoxicity in RIN-m5F insulinoma cells. Human (125)I-labeled amylin degradation was inhibited by 46 and 65% with the addition of 100 nmol/l human amylin or insulin, respectively. (125)I-labeled insulin degradation was inhibited with 100 nmol/l human amylin, rat amylin, and insulin (by 50, 50, and 73%, respectively). The IDE inhibitor bacitracin inhibited amylin degradation by 78% and insulin degradation by 100%. Amyloid staining by Congo red fluorescence was detectable at 100 nmol/l amylin and was pronounced at 1,000 nmol/l amylin treatment for 48 h. Bacitracin treatment markedly increased staining at all amylin concentrations. Bacitracin with amylin caused a dramatic decrease in cell viability compared with amylin alone (68 and 25%, respectively, at 10 nmol/l amylin). In summary, RIN-m5F cells degraded both amylin and insulin through a common proteolytic pathway. IDE inhibition by bacitracin impaired amylin degradation, increased amyloid formation, and increased amylin-induced cytotoxicity, suggesting a role for IDE in amylin clearance and the prevention of amylin aggregation.

PubMed Disclaimer

Similar articles

Cited by

Publication types