Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov 7;278(45):44567-73.
doi: 10.1074/jbc.M308745200. Epub 2003 Aug 27.

Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein

Affiliations
Free article

Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein

Kenth Johansson et al. J Biol Chem. .
Free article

Abstract

Measles virus is a negative-sense, single-stranded RNA virus belonging to the Mononegavirales order which comprises several human pathogens such as Ebola, Nipah, and Hendra viruses. The phosphoprotein of measles virus is a modular protein consisting of an intrinsically disordered N-terminal domain (Karlin, D., Longhi, S., Receveur, V., and Canard, B. (2002) Virology 296, 251-262) and of a C-terminal moiety (PCT) composed of alternating disordered and globular regions. We report the crystal structure of the extreme C-terminal domain (XD) of measles virus phosphoprotein (aa 459-507) at 1.8 A resolution. We have previously reported that the C-terminal domain of measles virus nucleoprotein, NTAIL, is intrinsically unstructured and undergoes induced folding in the presence of PCT (Longhi, S., Receveur-Brechot, V., Karlin, D., Johansson, K., Darbon, H., Bhella, D., Yeo, R., Finet, S., and Canard, B. (2003) J. Biol. Chem. 278, 18638-18648). Using far-UV circular dichroism, we show that within PCT, XD is the region responsible for the induced folding of NTAIL. The crystal structure of XD consists of three helices, arranged in an anti-parallel triple-helix bundle. The surface of XD formed between helices alpha2 and alpha3 displays a long hydrophobic cleft that might provide a complementary hydrophobic surface to embed and promote folding of the predicted alpha-helix of NTAIL. We present a tentative model of the interaction between XD and NTAIL. These results, beyond presenting the first measles virus protein structure, shed light both on the function of the phosphoprotein at the molecular level and on the process of induced folding.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources