Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec;90(6):3640-53.
doi: 10.1152/jn.00497.2003. Epub 2003 Aug 27.

Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats

Affiliations
Free article

Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats

L J G Bouyer et al. J Neurophysiol. 2003 Dec.
Free article

Abstract

The goal of these experiments was to define the contribution of hindpaw cutaneous inputs in the expression of spinal locomotion in cats. In 3 cats, some (n = 1) or all (n = 2) cutaneous nerves were cut bilaterally at ankle level before spinalization. This denervation caused small deficits that were gradually compensated as reported in the companion study. After spinalization, the completely denervated cats never recovered plantar foot placement or weight bearing of the hindquarters despite more than 35 days of treadmill training. Although normal electromyographic rhythmic activity developed at the hip and knee, ankle flexors and extensors were abnormally coactivated during stance. In contrast, the partially denervated cat regained foot placement and weight support 15 days after spinalization. However, after completing the denervation, foot placement and weight bearing were lost as in previous cats. In a 4th cat, spinalization was performed before denervation and the cutaneous nerves were cut sequentially in the right hindlimb only. Rapid locomotor adaptation occurred after cutting the deep peroneal, saphenous, and sural nerves. Later, cutting the superficial peroneal nerve produced paw drag, which was compensated within 8 days. On cutting the last cutaneous nerve (tibial), plantar foot placement was lost despite another 71 days of training. On the one hand, these experiments show that some cutaneous inputs are necessary for appropriate plantar foot placement and weight bearing of the hindquarters during spinal locomotion and, on the other hand, that locomotor compensation to partial cutaneous denervation after spinalization reveals important adaptive capacities of the spinal cord.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources