Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics
- PMID: 12951004
- DOI: 10.1016/s0142-9612(03)00355-7
Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics
Abstract
The incorporation of silicate into hydroxyapatite (HA) has been shown to significantly increase the rate of bone apposition to HA bioceramic implants. However, uncertainty remains about the mechanism by which silicate increases the in vivo bioactivity of HA. In this study, high-resolution transmission electron microscopy was used to observe dissolution from HA, 0.8 wt% Si-HA and 1.5 wt% Si-HA implants after 6 and 12 weeks in vivo. Our observations confirmed that defects, in particular those involving grain boundaries, were the starting point of dissolution in vivo. Dissolution was observed to follow the order 1.5 wt% Si-HA>0.8 wt% Si-HA>pure HA and it was found to be particularly prevalent at grain boundaries and triple-junctions. These observations may help to explain the mechanism by which silicate ions increase the in vivo bioactivity of pure HA, and highlight the enhanced potential of these ceramics for biomedical applications.
Similar articles
-
Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications.J Biomed Mater Res A. 2004 Jan 1;68(1):133-41. doi: 10.1002/jbm.a.20064. J Biomed Mater Res A. 2004. PMID: 14661258
-
Chemical characterization of silicon-substituted hydroxyapatite.J Biomed Mater Res. 1999 Mar 15;44(4):422-8. doi: 10.1002/(sici)1097-4636(19990315)44:4<422::aid-jbm8>3.0.co;2-#. J Biomed Mater Res. 1999. PMID: 10397946
-
Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo.J Biomed Mater Res A. 2004 Jun 15;69(4):670-9. doi: 10.1002/jbm.a.30035. J Biomed Mater Res A. 2004. PMID: 15162409
-
Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition.Micron. 2006;37(8):681-8. doi: 10.1016/j.micron.2006.03.006. Epub 2006 Mar 31. Micron. 2006. PMID: 16632368 Review.
-
Silicon substitution in the calcium phosphate bioceramics.Biomaterials. 2007 Oct;28(28):4023-32. doi: 10.1016/j.biomaterials.2007.05.003. Epub 2007 May 17. Biomaterials. 2007. PMID: 17544500 Review.
Cited by
-
Production and characterization of HA and SiHA coatings.J Mater Sci Mater Med. 2010 Jan;21(1):173-81. doi: 10.1007/s10856-009-3841-y. Epub 2009 Aug 12. J Mater Sci Mater Med. 2010. PMID: 19672562
-
Dissolution characteristics of extrusion freeformed hydroxyapatite-tricalcium phosphate scaffolds.J Mater Sci Mater Med. 2008 Nov;19(11):3345-53. doi: 10.1007/s10856-008-3473-7. Epub 2008 Jun 11. J Mater Sci Mater Med. 2008. PMID: 18545944
-
Biological Surface Layer Formation on Bioceramic Particles for Protein Adsorption.Biomimetics (Basel). 2024 Jun 8;9(6):347. doi: 10.3390/biomimetics9060347. Biomimetics (Basel). 2024. PMID: 38921227 Free PMC article. Review.
-
Preparation and characterization of diatomite and hydroxyapatite reinforced porous polyurethane foam biocomposites.Sci Rep. 2020 Aug 6;10(1):13308. doi: 10.1038/s41598-020-70421-3. Sci Rep. 2020. PMID: 32764640 Free PMC article.
-
Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates.J Biomater Appl. 2013 Sep;28(3):448-61. doi: 10.1177/0885328212460289. Epub 2012 Sep 14. J Biomater Appl. 2013. PMID: 22983020 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources