Id proteins negatively regulate basic helix-loop-helix transcription factor function by disrupting subnuclear compartmentalization
- PMID: 12952978
- DOI: 10.1074/jbc.M306056200
Id proteins negatively regulate basic helix-loop-helix transcription factor function by disrupting subnuclear compartmentalization
Abstract
Id helix-loop-helix (HLH) proteins act as global regulators of metazoan cell fate, cell growth, and differentiation. They heterodimerize with and inhibit the DNA-binding function of members of the basic helix-loop-helix (bHLH) family of transcription factors. Using real time fluorescence microscopy techniques in single living cells, we show here that nuclear pools of chromatin-associated bHLH transcription factor are freely exchangeable and in constant flux. The existence of a dynamic equilibrium between DNA-bound and free bHLH protein is also directly demonstrable in vitro. By contrast, Id protein is not associated with any subcellular, macromolecular structures and displays a more highly mobile, diffuse nuclear-cytoplasmic distribution. When co-expressed with antagonist Id protein, the chromatin-associated sublocalization of bHLH protein is abolished, and there is an accompanying 100-fold increase in its nuclear mobility to a level expected for freely diffusible Id-bHLH heterodimer. These results suggest that nuclear Id protein acts by sequestering pools of transiently diffusing bHLH protein to prevent reassociation with chromatin domains. Such a mechanism would explain how Id proteins are able to overcome the large DNA-binding free energy of bHLH proteins that is necessary to accomplish their inhibitory effect.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
