Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct 15;116(Pt 20):4227-38.
doi: 10.1242/jcs.00709. Epub 2003 Sep 2.

Mutations in the motor domain modulate myosin activity and myofibril organization

Affiliations

Mutations in the motor domain modulate myosin activity and myofibril organization

Qun Wang et al. J Cell Sci. .

Abstract

We have investigated the functional impact on cardiac myofibril organization and myosin motor activity of point mutations associated with familial hypertrophic cardiomyopathies (FHC). Embryonic chicken cardiomyocytes were transfected with vectors encoding green fluorescent protein (GFP) fused to a striated muscle myosin heavy chain (GFP-myosin). Within 24 hours of transfection, the GFP-myosin is found co-assembled with the endogenous myosin in striated myofibrils. The wild-type GFP-myosin had no effect on the organization of the contractile cytoskeleton of the cardiomyocytes. However, expression of myosin with the R403Q FHC mutation resulted in a small but significant decrease in myofibril organization, and the R453C and G584R mutations caused a more dramatic increase in myofibril disarray. The embryonic cardiomyocytes beat spontaneously in culture and this was not affected by expression of the wild-type or mutant GFP-myosin. For the biochemical analysis of myosin motor activity, replication defective adenovirus was used to express the wild-type and mutant GFP-myosin in C2C12 myotubes. The R403Q mutation enhanced actin filament velocity but had no effect on the myosin duty ratio. The R453C and G584R mutations impaired actin filament movement and both increased the duty ratio. The effects of these mutations on myosin motor activity correlate with changes in myofibril organization of live cardiomyocytes. Thus, mutations associated with hypertrophic cardiomyopathies that alter myosin motor activity can also impair myofibril organization.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources