Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003;12(5):545-52.
doi: 10.3727/000000003108747000.

Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice

Affiliations
Free article

Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice

Jun Ping Wei et al. Cell Transplant. 2003.
Free article

Abstract

Whole pancreas or beta-cell transplantation has opened the way for the treatment of advanced stage of diabetes mellitus. However, it is always limited by the scarcity of transplantation materials. The amniotic membrane is part of the fetal membrane and is composed of amniotic epithelium (HAE) and mesenchymal (HAM) cells that are derived from the inner cell mass in the blastocyst. Thus, HAE and HAM cells may have the potential to differentiate into various organs. The aim of our study was to assess the possibility of HAE cells differentiating into insulin-producing cells. In vitro, HAE cells stimulated with nicotinamide induced insulin mRNA in the culture cells. In vivo, HAE cells were capable of normalizing the blood glucose level of diabetic mice after several weeks of implantation into streptozotocin-induced diabetic mice. The distribution of human cells and human insulin secretion in mouse tissue studied by immunohistochemistry for anti-human-specific beta-2-microglobulin and anti-human-specific insulin shows the same location in mouse tissue. These studies suggest that HAE cells have the potential to differentiate into beta-cells in vivo, and hence that HAE cells have therapeutic potential for the treatment of type I diabetes mellitus.

PubMed Disclaimer

MeSH terms

LinkOut - more resources