Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov 14;278(46):45352-7.
doi: 10.1074/jbc.M307471200. Epub 2003 Sep 3.

Kinetic characterization of the chemical steps involved in the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis

Affiliations
Free article

Kinetic characterization of the chemical steps involved in the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis

Mathias Antoine et al. J Biol Chem. .
Free article

Abstract

Oxidation of methionine into methionine sulfoxide is associated with many pathologies and is described to exert regulatory effects on protein functions. Two classes of methionine sulfoxide reductases, called MsrA and MsrB, have been described to reduce the S and the R isomers of the sulfoxide of methionine sulfoxide back to methionine, respectively. Although MsrAs and MsrBs display quite different x-ray structures, they share a similar, new catalytic mechanism that proceeds via the sulfenic acid chemistry and that includes at least three chemical steps with 1) the formation of a sulfenic acid intermediate and the concomitant release of methionine; 2) the formation of an intra-disulfide bond; and 3) the reduction of the disulfide bond by thioredoxin. In the present study, it is shown that for the Neisseria meningitidis MsrA, 1) the rate-limiting step is associated with the reduction of the Cys-51/Cys-198 disulfide MsrA bond by thioredoxin; 2) the formation of the sulfenic acid intermediate is very efficient, thus suggesting catalytic assistance via amino acids of the active site; 3) the rate-determining step in the formation of the Cys-51/Cys-198 disulfide bond is that leading to the formation of the sulfenic intermediate on Cys-51; and 4) the apparent affinity constant for methionine sulfoxide in the methionine sulfoxide reductase step is 80-fold higher than the Km value determined under steady-state conditions.

PubMed Disclaimer

Publication types

LinkOut - more resources