Endogenous epidermal growth factor regulates the timing and pattern of embryonic mouse molar tooth morphogenesis
- PMID: 1295561
Endogenous epidermal growth factor regulates the timing and pattern of embryonic mouse molar tooth morphogenesis
Abstract
The tooth organ provides a model for discrete patterns of morphogenesis over short periods of developmental time. Studies were designed to test the hypothesis that endogenous epidermal growth factor (EGF) functions to regulate multiple cusp molar tooth morphogenesis during embryonic mouse development. The relative levels of endogenous EGF and EGF receptor (EGFR) transcripts were determined in both enamel organ epithelia and dental ectomesenchyme by reverse transcription-polymerase chain reaction (RT-PCR) assays. EGF and EGFR were localized by immunohistochemistry; both antigenic determinants were demonstrated on the same odontogenic cells in cultured tooth explants. To examine EGF-mediated signal transduction, cap stage mouse molar tooth organs (E16) were cultured in serumless, chemically-defined medium as either (i) controls, or supplemented with (ii) tryphostin (an EGF receptor kinase inhibitor), (iii) tyrphostin plus exogenous EGF, and (iv) exogenous EGF. Antisense oligodeoxynucleotide (ODN) strategy was used to investigate the functions of endogenous EGF employing (i) non-treated control, (ii) sense ODN control, (iii) antisense ODN, (iv) exogenous EGF, (v) sense ODN with exogenous EGF, and (vi) antisense ODN with exogenous EGF. Tyrphostin inhibited DNA synthesis and produced a significant decrease in the volume of the explants. These effects were recovered by addition of exogenous EGF. Antisense ODN inhibition resulted in abnormal cusp formations, decreased DNA synthesis, total DNA, RNA and protein content, and decreased stellate reticulum and tooth explant volumes. The decreased tooth size was not uniform, the most pronounced effect was in the stellate reticulum. This pattern of changes was not seen when antisense ODN treatment was supplemented with exogenous EGF. These results suggest that during cap stage of odontogenesis endogenous EGF acts to stimulate DNA synthesis, which increases the cell number of specific phenotypes within the enamel organ epithelia, and thereby regulates molar tooth morphogenesis.
Similar articles
-
Endogenous epidermal growth factor regulates limb development.J Surg Res. 1993 Jun;54(6):638-47. doi: 10.1006/jsre.1993.1098. J Surg Res. 1993. PMID: 8412075
-
Rieger syndrome revisited: experimental approaches using pharmacologic and antisense strategies to abrogate EGF and TGF-alpha functions resulting in dysmorphogenesis during embryonic mouse craniofacial morphogenesis.Am J Med Genet. 1993 Oct 1;47(5):689-97; discussion 687-8. doi: 10.1002/ajmg.1320470521. Am J Med Genet. 1993. PMID: 8266997 Review.
-
Role of epidermal growth factor expression in early mouse embryo lung branching morphogenesis in culture: antisense oligodeoxynucleotide inhibitory strategy.Dev Biol. 1993 Aug;158(2):555-9. doi: 10.1006/dbio.1993.1213. Dev Biol. 1993. PMID: 8344470
-
PDGF-A and PDGFR-alpha regulate tooth formation via autocrine mechanism during mandibular morphogenesis in vitro.Dev Dyn. 1998 Dec;213(4):500-11. doi: 10.1002/(SICI)1097-0177(199812)213:4<500::AID-AJA14>3.0.CO;2-A. Dev Dyn. 1998. PMID: 9853970
-
Growth factors and tooth development.Int J Dev Biol. 1989 Mar;33(1):165-72. Int J Dev Biol. 1989. PMID: 2485697 Review.
Cited by
-
Cultured incisors display major modifications in basal lamina deposition without further effect on odontoblast differentiation.Cell Tissue Res. 1995 Jan;279(1):135-47. doi: 10.1007/BF00300700. Cell Tissue Res. 1995. PMID: 7895255
-
Immunocytochemical expression of growth factors by odontogenic jaw cysts.Mol Pathol. 1997 Feb;50(1):21-7. doi: 10.1136/mp.50.1.21. Mol Pathol. 1997. PMID: 9208810 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Research Materials
Miscellaneous