Physiology and pathophysiology of the growth plate
- PMID: 12955857
- DOI: 10.1002/bdrc.10014
Physiology and pathophysiology of the growth plate
Abstract
Longitudinal growth of the skeleton is a result of endochondral ossification that occurs at the growth plate. Through a sequential process of cell proliferation, extracellular matrix synthesis, cellular hypertrophy, matrix mineralization, vascular invasion, and eventually apoptosis, the cartilage model is continually replaced by bone as length increases. The regulation of longitudinal growth at the growth plate occurs generally through the intimate interaction of circulating systemic hormones and locally produced peptide growth factors, the net result of which is to trigger changes in gene expression by growth plate chondrocytes. This review highlights recent advances in genetics and cell biology that are illuminating the important regulatory mechanisms governing the structure and biology of the growth plate, and provides selected examples of how studies of human mutations have yielded a wealth of new knowledge regarding the normal biology and pathophysiology of growth plate cartilage.
Similar articles
-
Endocrine regulation of the growth plate.Horm Res. 2005;64(4):157-65. doi: 10.1159/000088791. Epub 2005 Oct 4. Horm Res. 2005. PMID: 16205094 Review.
-
The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification.J Endocrinol. 2011 Nov;211(2):109-21. doi: 10.1530/JOE-11-0048. Epub 2011 Jun 3. J Endocrinol. 2011. PMID: 21642379 Review.
-
Cell-cycle control and the cartilage growth plate.J Cell Physiol. 2005 Jan;202(1):1-8. doi: 10.1002/jcp.20111. J Cell Physiol. 2005. PMID: 15389526 Review.
-
Impaired growth plate chondrogenesis in children with chronic illnesses.Pediatr Res. 2006 May;59(5):625-9. doi: 10.1203/01.pdr.0000214966.60416.1b. Pediatr Res. 2006. PMID: 16627871 Review.
-
Endochondral ossification: how cartilage is converted into bone in the developing skeleton.Int J Biochem Cell Biol. 2008;40(1):46-62. doi: 10.1016/j.biocel.2007.06.009. Epub 2007 Jun 29. Int J Biochem Cell Biol. 2008. PMID: 17659995 Review.
Cited by
-
Maturation of the equine medial femoral condyle osteochondral unit.Osteoarthr Cartil Open. 2020 Jan 27;2(1):100029. doi: 10.1016/j.ocarto.2020.100029. eCollection 2020 Mar. Osteoarthr Cartil Open. 2020. PMID: 36474556 Free PMC article.
-
Osteochondroma Pathogenesis: Mouse Models and Mechanistic Insights into Interactions with Retinoid Signaling.Am J Pathol. 2021 Dec;191(12):2042-2051. doi: 10.1016/j.ajpath.2021.08.003. Am J Pathol. 2021. PMID: 34809786 Free PMC article. Review.
-
Chondrocytes utilize a cholesterol-dependent lipid translocator to externalize phosphatidylserine.Biochemistry. 2006 Mar 14;45(10):3325-36. doi: 10.1021/bi0515927. Biochemistry. 2006. PMID: 16519527 Free PMC article.
-
Loss of β-catenin induces multifocal periosteal chondroma-like masses in mice.Am J Pathol. 2013 Mar;182(3):917-27. doi: 10.1016/j.ajpath.2012.11.012. Epub 2012 Dec 25. Am J Pathol. 2013. PMID: 23274133 Free PMC article.
-
Nonproliferative and Proliferative Lesions of the Rat and Mouse Skeletal Tissues (Bones, Joints, and Teeth).J Toxicol Pathol. 2016;29(3 Suppl):49S-103S. doi: 10.1293/tox.29.3S-2. Epub 2016 Jul 29. J Toxicol Pathol. 2016. PMID: 27621538 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources