Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992:70 Suppl:S145-57.
doi: 10.1139/y92-256.

Energy metabolism at the cellular level of the CNS

Affiliations
Review

Energy metabolism at the cellular level of the CNS

L Hertz et al. Can J Physiol Pharmacol. 1992.

Abstract

Evidence is accumulating that interactions between different cell types are of paramount importance for CNS function, for example, release of the excitatory transmitter glutamate from neurons and its preferential uptake into astrocytes. Some information is also available about energy metabolism in different cell types, or more often in models of different cell types (e.g., synaptosomes, cultured neurons, cultured astrocytes). In this review an attempt is made not only to correlate information obtained with different cell models but also to integrate this information with in vivo data, with histochemical observations, and with results obtained using brain slices. The emerging patterns indicate that neurons, synaptosomes, and astrocytes are all capable of complete glycolysis and oxidation of glucose. Elevated extracellular concentrations of potassium, known to occur in vivo, enhance energy metabolism by mechanisms that differ between neurons and astrocytes and to a large extent serve to reaccumulate extracellular potassium ions into adjacent cells. Monoaminergic agonists also stimulate energy metabolism, but mainly or exclusively in astrocytes. Profound differences are found between the effects of excess potassium and of aminergic transmitters, suggesting that high potassium concentrations enhance neuronal-astrocytic interactions, whereas the monoamines may tend to dissociate metabolic events in neurons and in astrocytes.

PubMed Disclaimer

Publication types

LinkOut - more resources