Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jul;75(4):763-8.
doi: 10.1016/s0091-3057(03)00151-5.

Anxiety does not affect the antinociceptive effect of Delta 9-THC in mice: participation of cannabinoid and opioid receptors

Affiliations
Comparative Study

Anxiety does not affect the antinociceptive effect of Delta 9-THC in mice: participation of cannabinoid and opioid receptors

Reinaldo N Takahashi et al. Pharmacol Biochem Behav. 2003 Jul.

Abstract

Cannabinoid receptor agonists significantly inhibit nociceptive responses in a large number of animal models. The present study examined whether mice displaying different basal levels of anxiety in the plus-maze test of anxiety might differ in terms of responsiveness to the antinociceptive effects of Delta(9)-tetrahydrocannabinol (Delta(9)-THC). Further, the involvement of the cannabinoid and/or opioid receptors in Delta(9)-THC-induced antinociception was investigated by using SR 141716A and naloxone, respectively, cannabinoid and opioid receptor antagonists. Delta(9)-THC-induced antinociception was evaluated in the formalin test that involves a biphasic response with an early and a late phase of high paw-licking activity. This characteristic biphasic response was observed in all control animals selected as "anxious" and "nonanxious." Delta(9)-THC (0.5-5 mg/kg i.p.) caused a dose-dependent antinociceptive effect in both groups of mice during the early and late phases. This response was fully reversed by SR 141716A (1 mg/kg i.p.) and partially reversed by naloxone (2 mg/kg i.p.). These findings suggest that mice selected for differences in anxiety-related behavior show similar responses to the antinociceptive action of Delta(9)-THC and that this action involves predominantly cannabinoid mechanisms.

PubMed Disclaimer

Publication types