Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Sep 1:8:s1280-303.
doi: 10.2741/1149.

Receptor-regulated Smads in TGF-beta signaling

Affiliations
Review

Receptor-regulated Smads in TGF-beta signaling

Fang Liu. Front Biosci. .

Abstract

Transforming growth factor beta (TGF-beta) and related polypeptides, including activins and bone morphogenetic proteins (BMPs), constitute the largest cytokine family, possessing fascinating features. TGF-beta and related peptides are multifunctional growth factors and they regulate many aspects of cellular processes such as proliferation, differentiation, adhesion and apoptosis. These evolutionarily conserved cytokines play an essential role in the development and homeostasis of virtually every tissue in organisms ranging from fruit flies to humans. Accordingly, inactivating mutations in several components of the TGF-beta signaling pathways have been found to cause a number of human disorders. The TGF-beta family members signal through cell surface serine/threonine kinase receptors. A family of proteins, designated as Smads (mammalian homologues of Drosophila Mad and C. elegans Sma), transduces the TGF-beta signal from cell surface to the nucleus. Upon activation, the TGF-beta type I receptor phosphorylates Smad2 and Smad3, which then form complexes with Smad4 and accumulate in the nucleus to regulate transcription of a variety of genes that encode crucial determinants of cell fate, such as cell cycle components, differentiation factors and cell adhesion molecules. Although Smad2 and Smad3 are highly homologous and share some overlapping activities, they have distinct functions and are regulated differentially. This review is primarily focused on our understanding of the similar as well as distinct function and regulation of Smad2 and Smad3 in TGF-beta signaling, their physiological roles revealed by knockout studies and their tumor suppressive functions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources